Hysteresis phenomenon at heat transfer by boiling in two-phase heat transfer circuits
Abstract
Keywords
Full Text:
PDF (Українська)References
Nikonov, A. A., Gorbenko, G. A., Blinkov, V. N. Teploobmennye kontury s dvukhfaznym teplonositelem dlya sistem termoregulirovaniya kosmicheskikh apparatov [Heat exchanging loops with a two-phase coolant for spacecraft thermal control systems]. Moscow, “Rocket and space technology, machine building” Publ., 1991. 302 p.
Tolubinskiy, V. Y. Teploobmen pri kipenii [Heat exchange at boiling]. Kyiv, Naukova dumka Publ., 1980. 316 p.
Nukiyama, S. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int J Heat Mass Transf, 1966, no. 9, iss. 12, pp. 1419–1433. DOI: 10.1016/0017-9310(66)90138-4.
Ming-Heng, S., Ma, J., Bu-Xuan, W. Analysis on hysteresis in nucleate pool boiling heat transfer. Int J Heat Mass Transf, 1993, no. 36, no. 18, pp. 4461–4466. DOI: 10.1016/0017-9310(93)90130-X.
Liang, H.-S., Yang, W.-J. A Remedy for Hysteresis in Nucleate Boiling Through Application of Micrographite-Fiber Nucleation Activators. Experimental Heat Transfer, 1996, no. 9, iss. 4, pp. 323–334. DOI: 10.1080/08916159608946528.
Gibbs, J. W. Termodynamycheskye raboty [Thermodynamic works]. Mocow, Hostekhyzdat Publ., 1950. 492 p.
Jones, B.J., McHale, J.P., Garimella, S. The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer. J Heat Transfer, 2009, vol. 131, no. 12, pp. 121009-1–121009-14. DOI: 10.1115/1.3220144.
Hsu, Y. -Y. On the Size Range of Active Nucleation Cavities on a Heating Surface. J Heat Transfer, 1962, vol. 84, iss. 3, pp. 207–213. DOI: 10.1115/1.3684339.
You, S. M., Simon, T. W., Bar-Cohen, A., Hong, Y. S. Effects of Dissolved Gas Content on Pool Boiling of a Highly Wetting Fluid. J Heat Transfer, 1995, vol. 117, no. 3, pp. 687–692. DOI: 10.1115/1.2822631.
Rainey, K. N., You, S. M., Lee, S. Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Surfaces in FC-72. J Heat Transfer, 2003, vol. 125, no. 1, pp. 75–83. DOI: 10.1115/1.1527890.
Dhir, V. K. Chapter Two - Nucleate Pool Boiling under Reduced Gravity Conditions—Role of Numerical Simulations. Advances in Heat Transfer, 2015, vol. 47, pp. 1667-202. DOI: 10.1016/bs.aiht.2015.07.001.
Tadrist, L., Combeau, H., Zamoum, M., Kessal, M. Experimental study of heat transfer at the transition regime between the natural convection and nucleate boiling: Influence of the heated wall tilt angle on the onset of nucleate boiling (ONB) and natural convection (ONC). Int J Heat Mass Transf, 2020, vol. 151, article no. 119388. DOI: 10.1016/j.ijheatmasstransfer.2020.119388.
Swarnkar, A., Lakhera, V. J. Ultrasonic augmentation in pool boiling heat transfer over external surfaces: A review. Journal of Mechanical Engineering Science, 2020, vol. 235, no. 11, pp. 2099–2111. DOI: 10.1177/0954406220950357.
Arcasi, A., Mastrullo, R., Mauro, A. W., Viscito, L. Experimental analysis on the hysteresis phenomenon during flow boiling heat transfer in a horizontal stainless-steel tube. Int J Heat Mass Transf, 2021, vol. 164, article no. 120604. DOI: 10.1016/j.ijheatmasstransfer.2020.120604.
Gakal, P. G., Gorbenko, G. A., Turna, R. Yu., Reshytov, E. R. Heat Transfer During Subcooled Boiling in Tubes (A Review). Journal of Mechanical Engineering, 2019, vol. 22, no. 1, pp. 9–17. DOI: 10.15407/pmach2019.01.009.
Bowring, R. W. Physical model, based on bubble detachment, and calculation of steam voidage in he sub-cooled region of a heated channel : Technical report. Institutt for Atomenergi (Norway). OECD Halden Reaktor Prosjekt, 1962. 111 p. OSTI Identifier: 4759604.
Celata, G. R., Cumo, M., Setaro, T. Hysteresis phenomena in subcooled flow boiling of well-wetting fluids. Experimental Heat Transfer, 1992, vol. 5, no. 4, pp. 253–275. DOI: 10.1080/08916159208946444.
Su, S., Huang, S., Wang, X. Study of boiling incipience and heat transfer enhancement in forced flow through narrow channels. International Journal of Multiphase Flow, 2005, vol. 31, no. 2, pp. 253–260. DOI: 10.1016/j.ijmultiphaseflow.2004.11.003.
Kandlikar, S. G., Spiesman, P. H. Effect of Surface Finish on Flow Boiling Heat Transfer. ASME : International Mechanical Engineering Congress and Exposition, Anaheim, California, USA, 1998, pp. 57-167. DOI: 10.1115/IMECE1998-0592.
Sugrue, R., Buongiorno, J., McKrell, T. An experimental study of bubble departure diameter in subcooled flow boiling including the effects of orientation angle, subcooling, mass flux, heat flux, and pressure. Nuclear Engineering and Design, 2014, vol. 279, pp. 182–188. DOI: 10.1016/j.nucengdes.2014.08.009.
Ohta, H. Microgravity Heat Transfer in Flow Boiling. Microgravity Heat Transfer in Flow Boiling, 2003, vol. 37, no. C, pp. 1–76. DOI: 10.1016/S0065-2717(03)37001-7.
Narazaki, H., Matsumoto, S., Kaneko, A. Effect of Dissolved Gas on Bubble Behavior and Heat Transfer in Forced Flow Boiling. Japanese Journal Of Multiphase Flow, 2021, vol. 35, no. 2, pp. 327–336. DOI: 10.3811/jjmf.2021.024.
Chen, C. A., Li, K. W., Li, W. K., Lin, T. F., Yan, W. M. Experimental study on R-410A subcooled flow boiling heat transfer and bubble behavior inside horizontal annuli. International Communications in Heat and Mass Transfer, 2021, vol. 124, article no. 105283. DOI: 10.1016/j.icheatmasstransfer.2021.105283.
Jung-ho, K. Review of Reduced Gravity Boiling Heat Transfer: US Research. Journal of The Japan Society of Microgravity Application, 2003, vol. 20, no. 4, pp. 264–271. DOI: 10.15011/jasma.20.4.264.
Sawada, K., Kurimoto, T., Okamoto, A., Matsumoto, S., Takaoka, H., Kawasaki, H., Takayanagi, M., Shinmoto, Y., Asano, H., Kawanami, O., Suzuki, K., Imai, R., Ohta, H. Development of Boiling and Two-phase Flow Experiments on Board ISS (Dissolved Air Effects on Subcooled Flow Boiling Characteristics). International Journal of Microgravity, 2016, vol. 33, iss. 1, article no. 330106. DOI: 10.15011/ijmsa.33.330106.
Cheng, N., Yu, S., Xiao, J., Peng, C.-H. Experimental Study of Onset of Nucleate Boiling in Vertical Rectangular Channels with Different Flow Path Heights. Science and Technology of Nuclear Installations, 2022, vol. 2022, pp. 1–10. DOI: 10.1155/2022/7760569.
Piasecka, M., Poniewski, M. E. Hysteresis Phenomena at the Onset of Subcooled Nucleate Flow Boiling in Microchannels. Heat Transfer Engineering, 2004, vol. 25, no. 3, pp. 44–51. DOI: 10.1080/01457630490280083.
Kandlikar, S. G. Fundamental issues related to flow boiling in minichannels and microchannels. Exp Therm Fluid Sci, 2002, vol. 26, no. 2-4, pp. 389–407. DOI: 10.1016/S0894-1777(02)00150-4.
Gorbenko, G. A., Gakal, P. G., Turna, R. Y., Hodunov, A. M., Reshytov, E. R. Heat Transfer in Evaporator of Thermal Sink in Presence of subcooled Boiling Section. International Journal of Heat and Technology, 2021, vol. 39, iss. 2, pp. 375–382. DOI: 10.18280/ijht.390206.
Yoon, P.-H., Jeong, J., Kang, Y. T. Boiling hysteresis at low temperature on enhanced tubes. International Journal of Refrigeration, 2004, vol. 27, iss. 1, pp. 4-9. DOI: 10.1016/S0140-7007(03)00123-3.
Sato, T., Matsumura, H. On the Conditions of Incipient Subcooled-Boiling with Forced Convection. Bulletin of JSME, 1964, vol. 7, iss. 26, pp. 392–398. DOI: 10.1299/jsme1958.7.392.
Bergles, A. E., Rohsenow, W. M. The Determination of Forced-Convection Surface-Boiling Heat Transfer. J Heat Transfer, 1964, vol. 86, no. 3, pp. 365–372. DOI: 10.1115/1.3688697.
Hong, G., Yan, X., Yang, Y.-H., Liu, S., Huan, Y. Experimental study on onset of nucleate boiling in narrow rectangular channel under static and heaving conditions. Ann Nucl Energy, 2012, vol. 39, no. 1, pp. 26–34. DOI: 10.1016/j.anucene.2011.09.009.
Gorbenko, G. O., Gakal, P. H., Turna, R. Yu., Hodunov, A. M. Retrospective Review of a Two-Phase Mechanically Pumped Loop for Spacecraft Thermal Control Systems. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, 2021, vol. 24, no. 4, pp. 27–37. DOI: 10.15407/pmach2021.04.027.
DOI: https://doi.org/10.32620/aktt.2022.5.01