Approximation - markov models of changes in the technical condition parameters of power and energy installations in long-term operation
Abstract
Keywords
Full Text:
PDF (Українська)References
Hvozdeva, I., Myrhorod, V., Derenh, Y. The Method of Trend Analysis of Parameters Time Series of Gas-turbine Engine State. AMiTaNS’17, AIP Conf. Proc. edited by M. D. Todorov. American Institute of Physics, Melville, NY, 2017, vol. 1895, pp. 030002-1 – 030002-9. DOI: 10.1063/1.5007361.
Myrhorod, V., Hvozdeva, I., Derenh, Y. Two-dimensional trend analysis of time series of complex technical objects diagnostic parameters. 11th Interna-tional Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19, AIP Conference Proceedings, 2019, vol. 2164, iss. 1, article no. 060013. pp. 040011-1 – 040011-12. DOI: 10.1063/1.5130815.
Breikin, T., Arkov, V., Kulikov, G. Application of Markov chains to identification of gas turbine engine dynamic models. International Journal of Systems Science, 2006, vol. 37, iss. 3, pp. 197–205. DOI: 10.1080/00207720600566065.
Zhengmao, Ye, Habib, Mohamadian. Simple Engine Exhaust Temperature Modeling and System Identification Based on Markov Chain Monte Carlo. Applied Mechanics and Materials, 2014, vol. 598, pp. 224-228. DOI: 10.4028/www.scientific.net/AMM.598.224.
DOI: https://doi.org/10.32620/aktt.2022.4sup2.11