A method for determining the characteristics of the steady creep of a single crystal alloy

Yevhen Nemanezhyn, Gennadiy Lvov, Yuriy Torba

Abstract


The subject of this article is the phenomenon of material destruction during creep, as one of the most dangerous and damaging effects on turbine blades in the conditions of their operation. Considering the strength of the turbine blades of aircraft engines and power plants, note that the mechanism of cracks in the creep process is largely due to the peculiarities of the crystal structures of the blades and the properties of these structures. At this stage of development of world technologies, turbine blades are made by single crystal casting and directional solidification. These types of crystal structures are characterized by the anisotropy of their properties. The reason for the anisotropy of crystals is that the ordered arrangement of atoms, molecules, or ions in the interaction between them and the interatomic distances (as well as some unrelated direct relations, such as polarization or electrical conductivity) differ in different directions. The article pays special attention to the consideration of the creep model of an anisotropic alloy with a monocrystalline structure. The natural way to determine the material parameters of the theoretical material model is to conduct the required number of basic experiments. Numerical modeling using the known creep properties of single crystals is an alternative possibility to determine the parameters of the material. The algorithm described in this article allows us to determine all the average creep properties of a single crystal. The parameters of the described ratios can be obtained either because of direct experiments, or on the basis of micromechanical analysis, as in the case of composite materials. This article considers an example of obtaining some characteristics of the single-crystal alloy ZhS-32 because of the approximation of its creep curves, obtained experimentally. Based on Norton-Bailey's law and using the modern calculation system Maple Release 2021.0, the minimum creep deformation rate and creep constants are determined, and a graph of the creep deformation rate dependence on the material load level is plotted.

Keywords


creep; turbine blades; crystal structure; anisotropy; single crystal; average creep properties; Norton-Bailey law

References


Liu, D., Li, H., Liu, Y. Numerical simulation of creep damage and life prediction of superalloy turbine blade. Mathematical Problems in Engineering, 2015, pp. 1-10.

Vorob'ev, Yu. S., Getsov, L. B., Mel'nikov, B. E., Semenov, A. S. Problemy vibratsionnogo sostoyaniya fundamentov, seismostoikosti i prochnosti turbomashin. Chast' 2 [Problems of the vibration state of foundations, seismic resistance and strength of turbomachines. Part 2]. Nauchno-tekhnicheskie vedomosti Cankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta, 2013, vol. 4-1, no. 183, pp. 1-15.

Shalin, R. E., Svetlov, I. L., Kachanov, E. B. Monokristally nikelevykh zharoprochnykh splavov [Single crystals of nickel heat-resistant alloys]. Moscow, Mashinostroenie Publ. - Mechanical Engineering, 1997. 333 p.

Von Mises, R. Mechanik der plastischen Formanderung von Kristallen. ZAMM, 1928, vol. 8, no. 3, pp. 161–185.

Hill, R. The Mathematical Theory of Plasticity. Materials Research and Engineering. Oxford University Press, London, 1950, 250 p.

Bertram, A., Olschewski, J. Anisotropic modeling of the single crystal superalloy SRR99. Comp. Mat. Sci, 1996, vol. 5, pp. 12–16

Mahnken, R. Anisotropic creep modeling based on elastic projection operators with applications to CMSX-4 superalloy. Int. J. Mech. Sci, 1998, vol. 14, pp. 235–280.

Qi, W., Bertram, A. Anisotropic continuum damage modeling for single crystals at high temperatures. Int. J. of Plasticity, 1999, vol. 15, pp. 1197–1215.

Qi, W., Bertram, A. Damage modeling of the single crystal superalloy SRR99 under monotonous creep. Comp. Mater. Sci, 1998, vol. 13, pp. 132–141.

Qi, W., Bertram, A. Anisotropic creep damage modelling of single crystalsuperalloys. Technische Mechanik, 1997, vol. 17, no. 4, pp. 313–322.

Jeong, H. W., Seo, S. M., Choi, B. G., Yoo, Y. S., Ahn, Y. K., Lee, J. H. Effect of long-term thermal exposures on microstructures and mechanical properties of directionally solidified CM247LC alloy. Met. Mater. Int, 2013, vol. 19, no. 5, pp. 917-925. DOI: 10.1007/s12540-013-5003-5

Rouault-Rogez, H., Dupeux, M., Ignat, M. High temperature tensile creep of CMSX-2 nickel base superalloy single crystals. Acta metal. Mater, 1994, vol. 42, no. 9, pp. 3137-3148.

Erickson, G. L. The development and application of CMSX-10. The Minerals, Metals & Materials Society, 1996, pp. 35-44.

Ro, Y., Zhou, H., Koizumi, Yu., Yokokawa, T., Kobayashi, T., Harada, H., Okada, I. Thermal-mechanical fatigue property of Ni-base single crystal superalloys TMS-82+ and TMS-75. Materials Transactions, 2004, vol. 45, no. 2, pp. 396-398.

Zhou, H., Harada, H., Ro, Y., Okada, I. Investigations on the thermo-mechanical fatigue of two Ni-based single-crystal superalloys. Materials Science and Engineering, 2005, pp. 161-167. DOI: 10.1016/j.msea.2004.11.013

Maldini, M., Harada, H., Koizumi, Y., Kobayashi, T., Lupinc, V. Tertiary creep behaviour of a new single crystal superalloy at 900°C. Scripta mater, 2000, vol. 43, pp. 637–644.

Naumenko, K. Altenbach, H. Modeling of Creep for Structural Analysis. Springer, Berlin, 2007, pp. 5-17. DOI: 10.1007/978-3-540-70839-1

Altenbach, H. Altenbach, J., Naumenko, K. Ebene Flachentragwerke. Springer, Berlin, 1998, pp. 10-25.

Ting, T. C. T. Anisotropic Elasticity. Theory and Applications. Oxford University Press, 1996, 570 p. DOI: 10.1093/oso/9780195074475.001.0001

Bohlke, T. Crystallographic Texture Evolution and Elastic Anisotropy. Simulation, Modelling and Applications, PhD-Thesis. Shaker Verlag, Netherlands, 2000, 158 p.

Bertram, A., Olschewski, J. A phenomenological anisotropic creep model for cubic single crystals. In: Lemaitre, J. (ed.) Handbook of Materials Behaviour Models. Academic Press, San Diego, 2001, pp. 303–307.

Mahnken, R. Anisotropic creep modeling based on elastic projection operators with applications to CMSX-4 superalloy. Int. J. Mech. Sci, 1998, vol. 14, pp. 235–280.

Altenbach, H., Lvov, G., Lvov, I., Morachkovsky, O. The Use of the Homogenization Method in the Analysis of Anisotropic Creep in Metal-Matrix Composites. In: Altenbach H., Beitelschmidt M., Kästner M., Naumenko K., Wallmersperger T. (eds) Material Modeling and Structural Mechanics. Advanced Structured Materials. Springer, Berlin, 2022, vol. 161, pp. 1-18. DOI: 10.1007/978-3-030-97675-0_1.




DOI: https://doi.org/10.32620/aktt.2022.4sup2.07