A method for determining the characteristics of the steady creep of a single crystal alloy
Abstract
Keywords
Full Text:
PDF (Українська)References
Liu, D., Li, H., Liu, Y. Numerical simulation of creep damage and life prediction of superalloy turbine blade. Mathematical Problems in Engineering, 2015, pp. 1-10.
Vorob'ev, Yu. S., Getsov, L. B., Mel'nikov, B. E., Semenov, A. S. Problemy vibratsionnogo sostoyaniya fundamentov, seismostoikosti i prochnosti turbomashin. Chast' 2 [Problems of the vibration state of foundations, seismic resistance and strength of turbomachines. Part 2]. Nauchno-tekhnicheskie vedomosti Cankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta, 2013, vol. 4-1, no. 183, pp. 1-15.
Shalin, R. E., Svetlov, I. L., Kachanov, E. B. Monokristally nikelevykh zharoprochnykh splavov [Single crystals of nickel heat-resistant alloys]. Moscow, Mashinostroenie Publ. - Mechanical Engineering, 1997. 333 p.
Von Mises, R. Mechanik der plastischen Formanderung von Kristallen. ZAMM, 1928, vol. 8, no. 3, pp. 161–185.
Hill, R. The Mathematical Theory of Plasticity. Materials Research and Engineering. Oxford University Press, London, 1950, 250 p.
Bertram, A., Olschewski, J. Anisotropic modeling of the single crystal superalloy SRR99. Comp. Mat. Sci, 1996, vol. 5, pp. 12–16
Mahnken, R. Anisotropic creep modeling based on elastic projection operators with applications to CMSX-4 superalloy. Int. J. Mech. Sci, 1998, vol. 14, pp. 235–280.
Qi, W., Bertram, A. Anisotropic continuum damage modeling for single crystals at high temperatures. Int. J. of Plasticity, 1999, vol. 15, pp. 1197–1215.
Qi, W., Bertram, A. Damage modeling of the single crystal superalloy SRR99 under monotonous creep. Comp. Mater. Sci, 1998, vol. 13, pp. 132–141.
Qi, W., Bertram, A. Anisotropic creep damage modelling of single crystalsuperalloys. Technische Mechanik, 1997, vol. 17, no. 4, pp. 313–322.
Jeong, H. W., Seo, S. M., Choi, B. G., Yoo, Y. S., Ahn, Y. K., Lee, J. H. Effect of long-term thermal exposures on microstructures and mechanical properties of directionally solidified CM247LC alloy. Met. Mater. Int, 2013, vol. 19, no. 5, pp. 917-925. DOI: 10.1007/s12540-013-5003-5
Rouault-Rogez, H., Dupeux, M., Ignat, M. High temperature tensile creep of CMSX-2 nickel base superalloy single crystals. Acta metal. Mater, 1994, vol. 42, no. 9, pp. 3137-3148.
Erickson, G. L. The development and application of CMSX-10. The Minerals, Metals & Materials Society, 1996, pp. 35-44.
Ro, Y., Zhou, H., Koizumi, Yu., Yokokawa, T., Kobayashi, T., Harada, H., Okada, I. Thermal-mechanical fatigue property of Ni-base single crystal superalloys TMS-82+ and TMS-75. Materials Transactions, 2004, vol. 45, no. 2, pp. 396-398.
Zhou, H., Harada, H., Ro, Y., Okada, I. Investigations on the thermo-mechanical fatigue of two Ni-based single-crystal superalloys. Materials Science and Engineering, 2005, pp. 161-167. DOI: 10.1016/j.msea.2004.11.013
Maldini, M., Harada, H., Koizumi, Y., Kobayashi, T., Lupinc, V. Tertiary creep behaviour of a new single crystal superalloy at 900°C. Scripta mater, 2000, vol. 43, pp. 637–644.
Naumenko, K. Altenbach, H. Modeling of Creep for Structural Analysis. Springer, Berlin, 2007, pp. 5-17. DOI: 10.1007/978-3-540-70839-1
Altenbach, H. Altenbach, J., Naumenko, K. Ebene Flachentragwerke. Springer, Berlin, 1998, pp. 10-25.
Ting, T. C. T. Anisotropic Elasticity. Theory and Applications. Oxford University Press, 1996, 570 p. DOI: 10.1093/oso/9780195074475.001.0001
Bohlke, T. Crystallographic Texture Evolution and Elastic Anisotropy. Simulation, Modelling and Applications, PhD-Thesis. Shaker Verlag, Netherlands, 2000, 158 p.
Bertram, A., Olschewski, J. A phenomenological anisotropic creep model for cubic single crystals. In: Lemaitre, J. (ed.) Handbook of Materials Behaviour Models. Academic Press, San Diego, 2001, pp. 303–307.
Mahnken, R. Anisotropic creep modeling based on elastic projection operators with applications to CMSX-4 superalloy. Int. J. Mech. Sci, 1998, vol. 14, pp. 235–280.
Altenbach, H., Lvov, G., Lvov, I., Morachkovsky, O. The Use of the Homogenization Method in the Analysis of Anisotropic Creep in Metal-Matrix Composites. In: Altenbach H., Beitelschmidt M., Kästner M., Naumenko K., Wallmersperger T. (eds) Material Modeling and Structural Mechanics. Advanced Structured Materials. Springer, Berlin, 2022, vol. 161, pp. 1-18. DOI: 10.1007/978-3-030-97675-0_1.
DOI: https://doi.org/10.32620/aktt.2022.4sup2.07