Experimental research of thermoacoustic engines with two-phase working body
Abstract
Keywords
Full Text:
PDF (Українська)References
Joung, Tae-Hwan., Kang, Seong-Gil., Lee, Jong-Kap., Ahn, Junkeon. The IMO initial strategy for reducing Greenhouse Gas(GHG) emissions, and its follow-up actions towards 2050. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 2020, vol. 4, no. 1, pp. 1-7. DOI: 10.1080/25725084.2019.1707938.
Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A. A., Staell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag, 2019, no. 182, pp. 72–88. DOI: 10.1016/j.enconman.2018.12.080.
Forman, С., Pardemann, M. I., Muritala, I. K., Meyer, B. Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews, 2016, no. 57, pp. 1568–1579. DOI: 10.1016/j.rser.2015.12.192.
Singh, D., Pedersen, E. A review of waste heat recovery technologies for maritime applications. Energy Conversion and Management, 2016, vol. 111, pp. 315–328. DOI: 10.1016/j.enconman.2015.12.073.
Waste heat recovery system. Available at: https://mandieselturbo.com/docs/librariesprovider6/technical-papers/waste-heat-recovery-system.pdf. (accessed 10.03.2022).
Haddad, С., Périlhon, С., Danlos, А. Some Efficient Solutions to Recover Low and Medium Waste Heat. 14 Intern. Conf. on Technologies and Materialsfor Renewable Energy, Environment and Sustainability Competitiveness of the Thermoacoustic technology. Cairo, 2014, vol. 50, pp. 1056-1069. DOI: 10.1016/j.egypro.2014.06.125.
Swift, G. W. Thermoacoustic: A unifying perspective for some engines and refrigerators. American Inst. Of Physics Publ., 2002. 300 p.
Korobko, V. V. Pidvyshchennia efektyvnosti enerhetychnykh ustanovok shliakhom zastosuvannia termoakustychnykh tekhnolohii [Improvement of Efficiency of Power Plants by Applying Thermoacoustic Technologies]. Cudostroenye y morskaia ynfrastruktura, Nykolaev, Yzd. NUK, 2018, no. 2 (10), pp. 252–261.
Noda, D., Ueda, Y. A thermoacoustic oscillator powered by vaporized water and ethanol. American Journal of Physics, 2013, vol. 81, isss. 2, pp. 124–126. DOI: 10.1119/1.4766940.
Yang, R, Meir, A, Ramon, GZ. Theoretical Performance Characteristics of a Travelling-Wave Phase-Change Thermoacoustic Engine for Low-Grade Heat Recovery. Applied Energy, 2020, vol. 261, article no. 114377. DOI: 10.1016/j.apenergy.2019.114377.
Biwa, T., Tashiro, Y., Nomura, H., Ueda, Y., Yazaki, T. Acoustic intensity measurement in a narrow ductby a two-sensor method. Rev. Sci. Instrum, 2007, vol. 78, article no. 086110. DOI: 10.1063/1.2768929.
Kondratenko, Y., Korobko, V., Korobko, O., Kondratenko, G., Kozlov, O. Green-IT Approach to Design and Optimization of Thermoacoustic Waste Heat Utilization Plant Based on Soft Computing. Green IT Engineering: Components, Networks and Systems Implementation. Studies in Systems, Decision and Control, Springer, Cham, 2017, vol. 105, pp. 287–311. DOI: 10.1007/978-3-319-55595-9_14.
DOI: https://doi.org/10.32620/aktt.2022.4sup1.12