Changing patterns of the optimal composition and parameters of propulsions with ramjet ducts from the supersonic cruising flight speed

Oleh Kislov, Mykhailo Shevchenko

Abstract


There are two aircraft concepts for transoceanic flights at supersonic speed. The first is the aircraft with moderate supersonic cruising speed M = 1.7...2.2, and the second is the aircraft with cruising speed M ≥ 3. Propulsion with a ramjet engine (ramjet) is preferable for high supersonic speeds. However, a ramjet has no starting thrust and is uneconomical at subsonic flight speeds. Combined propulsion with a turbojet duct for takeoff and a ramjet duct for supersonic cruise flight are used to overcome this contradiction. There are known propulsion with turboramjet engines, as well as various propulsion schemes with turbofan engines (afterburning and duct-burning ones), in which the outer contour together with the afterburner and nozzle can be considered the ramjet duct. When the turbojet duct is turned off, the operating process of such turbofan engines is practically the same as the ramjet, which allows using the advantages of a ramjet in supersonic cruise flight. Because flight at supersonic cruising speed can be provided by different propulsion compositions, the choosing problem of the composition and parameters of the propulsion for an aircraft with supersonic cruising speed is relevant. A calculation-analytical method was used to select the composition and parameters of the propulsion, which is based on the maximum relative mass of the payload criterion. Using the aircraft mass balance equation this criterion can be represented as a minimum conditions for the relative mass of the fuel and propulsion. Using this method, for an aircraft with a given mass, aerodynamic characteristics and a given flight profile, for the indicated propulsion compositions, the change patterns of the minimum relative mass of fuel and propulsion in the range of M = 2.5...4 are established. The established patterns allow choosing the propulsion composition and parameters depending on the speed of the supersonic cruising flight or choosing the flight speed of the aircraft at a given propulsion composition. The dependance of the propulsion working process optimal parameters for takeoff and cruising mode on the speed of supersonic cruising flight according to the criterion minimum of relative mass of fuel and propulsion were obtained.

Keywords


propulsion; relative mass of fuel and propulsion; aircraft; supersonic cruising speed; ramjet engine; ramjet mode; ramjet duct; turbojet duct

References


Chen, M., Jia, Z., Tang, H., Xiao, Y., Yang, Y., Yin, F. Research on simulation and performance optimization of Mach 4 civil aircraft propulsion concept. International Journal of Aerospace Engineering, 2019, no. 2019, article id 2918646. 19 p. DOI: 10.1155/2019/2918646.

Hitti, N. Virgin Galactic's high-speed Mach 3 aircraft will usher "a new frontier in high-speed travel". Available at: https://www.dezeen.com/2020/08/05/virgin-galactic-rolls-royce-mach-3-aircraft-design/ (аccessed 25.01.2022).

Arefyev, K. Yu., Kukshinov, N. V., Prokhorov, A. N. Analysis of development trends of power-units for high-speed flying vehicles. Journal of Physics: Conference Series, 2019, no. 1147, article id 012055, DOI: 10.1088/1742-6596/1147/1/012055.

Shevchenko, M. Vybir skladu, parametriv robochoho protsesu i rezhymu roboty sylovoyi ustanovky lital'noho aparatu z nadzvukovoyu kreysers'koyu shvydkistyu pol'otu [Selection of a composition, operating process parameters and operating mode of propulsion for a supersonic cruising aircraft]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2021, no. 3(171), pp. 32-41. DOI: 10.32620/aktt.2021.3.04.

Ulitenko, Yu. A. Analiz kharakteristik turboreaktivnogo dvukhkonturnogo dvigatelya s forsazhnoi kameroi sgoraniya s vpryskom vody za vkhodnym ustroistvom [Turbojet bypass engine with afterburner with water injection after input unit performance analysis]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2019, no. 1(153), pp. 29-38.DOI: 10.32620/aktt.2019.1.03.

Optimizatsiya i vybor parametrov rabochego protsessa GTD po samoletnym kriteriyam effektivnosti s ispol'zovaniem ASTRA-OPT [Optimization and selection of parameters of the GTE working process according to aircraft efficiency criteria using ASTRA-OPT]. Samara, Samarskiy gosudarstveniy aerokosmicheskiy universitet Publ., 2007. 40 p.

Kislov, O. V., Shevchenko, M. A. Metod vybora sostava i rezhima raboty silovoi ustanovki, rezhima raboty dlya letatel'nogo apparata so sverkhzvukovoi kreiserskoi skorost'yu [Method of Choosing Composition and Operation Mode of Propulsion, Operation Mode of Aircraft at Supersonic Cruising Speed]. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii – Open Information and Computer Integrated Technologies, 2020, no. 88, pp. 51-61. DOI: 10.32620/oikit.2020.88.04.

Eger, S. M., Mishin, V. F., Liseitsev, N. K. Proektirovanie samoletov [Aircraft Design]. Moscow, Mechanical Publ., 1983. 616 р.

Druzhinin, L. N., Shvets, L. I., Lanshin, A. I. Matematicheskoe modelirovanie GTD na sovremennykh EVM pri issledovanii parametrov i kharakteristik aviatsionnykh dvigatelei [Mathematical modelling of GTEs on modern computers in the study of parameters and characteristics of aircraft engines]. Trudy TsIAM, Moscow, 1979, no. 832. 46 p.

Kislov, O, Ambrozhevich, M., Shevchenko, M. Development of a method to improve the calculation accuracy of specific fuel consumption for performance modeling of air-breathing engines. Eastern-European Journal of Enterprise Technologies, 2021, vol. 2, no. 8 (110), pp. 23-30. DOI: 10.15587/1729-4061.2021.229515.

Kislov, O., Shevchenko, M. Development of a method for selecting a cruising mode and engine control program of a ramjet aircraft. Eastern-European Journal of Enterprise Technologies, 2021, vol. 3, no. 3 (111), pp. 6-14. DOI: 10.15587/1729-4061.2021.233850.

Morgenstern, J. et al. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period Phase 2. NASA Report, 2015, no. NASA/CR-2015-218719. 396 р. Available at: https://ntrs.nasa.gov/citations/20150015837 (аccessed 25.01.2022).

Shljahtenko, S. M. Teorija vozdushnoreaktivnyh dvigatelej [Theory of jet engines]. Moscow, Mechanical Publ., 1975. 567 p.

Kislov, O., Shevchenko, M. Osobennosti rascheta i regulirovaniya dvukhkonturnogo turboreaktivnogo dvigatelya s forsazhnoi kameroi sgoraniya v naruzhnom konture na pryamotochnykh rezhimakh raboty [Calculation and regulation features of duct-burning turbofan engine at ramjet modes]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2020, no. 6(166), pp. 15-23. DOI: 10.32620/aktt.2020.6.02.

Dugan, F. J., Koenig, R. W., Whitlow, J. B., McAuliffe, T. B. Turbojet and turbofan engines for a Mach 3supersonic transport. NASA Report, 1964, no. CR-64-21540. 12 р.

Kishalov, A. E., Markina, K. V. Issledovanie i prognozirovanie gazodinamicheskikh parametrov potoka kamer sgoraniya aviatsionnykh GTD [Research and prediction of thermal gas parameters flow combustion chambers of aviation GTE]. Vestnik UGATU, Ufa, USATU, 2017, no. 13(1), pp. 60-68.

Nechaev, Yu. N., Fedorov, R. M., Kotovskii, V. N., Polev, A. S. Teoriya aviatsionnykh dvigatelei [Theory of Aviation Engines]. Moscow, VVIA im. prof. N. E. Zhukovskogo Publ., 2006. 448 p.

Jaminson, R. R. Power Units for Very High Speed Winged Vehicles. Aerospace Proceeding, Bristol, England, 1966, pp. 484-513.

Van Rooij, M. P. C., Dang, T.Q., Larosiliere, L.M. Enhanced Blade Row Matching Capabilities via 3d Multistage Inverse Design and Pressure Loading Manager. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, June 9-13, 2008. Germany, Berlin, Paper No. GT2008-50539, pp. 2389-2399. DOI: 10.1115/GT2008-50539.

Demenchenok, V. P., Druzhinin, L. N., Parkhomov, A. L., Sosunov, V. A., Tskhovrebov, M. M., Shlyakhtenko, S. M., El'perina, A. S. Teoriya dvukhkonturnykh turboreaktivnykh dvigatelei [Theory of turbofan engines]. Moscow, Mashinostroenie Publ., 1979. 432 p.




DOI: https://doi.org/10.32620/aktt.2022.3.05