Changing patterns of the optimal composition and parameters of propulsions with ramjet ducts from the supersonic cruising flight speed
Abstract
Keywords
Full Text:
PDF (Українська)References
Chen, M., Jia, Z., Tang, H., Xiao, Y., Yang, Y., Yin, F. Research on simulation and performance optimization of Mach 4 civil aircraft propulsion concept. International Journal of Aerospace Engineering, 2019, no. 2019, article id 2918646. 19 p. DOI: 10.1155/2019/2918646.
Hitti, N. Virgin Galactic's high-speed Mach 3 aircraft will usher "a new frontier in high-speed travel". Available at: https://www.dezeen.com/2020/08/05/virgin-galactic-rolls-royce-mach-3-aircraft-design/ (аccessed 25.01.2022).
Arefyev, K. Yu., Kukshinov, N. V., Prokhorov, A. N. Analysis of development trends of power-units for high-speed flying vehicles. Journal of Physics: Conference Series, 2019, no. 1147, article id 012055, DOI: 10.1088/1742-6596/1147/1/012055.
Shevchenko, M. Vybir skladu, parametriv robochoho protsesu i rezhymu roboty sylovoyi ustanovky lital'noho aparatu z nadzvukovoyu kreysers'koyu shvydkistyu pol'otu [Selection of a composition, operating process parameters and operating mode of propulsion for a supersonic cruising aircraft]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2021, no. 3(171), pp. 32-41. DOI: 10.32620/aktt.2021.3.04.
Ulitenko, Yu. A. Analiz kharakteristik turboreaktivnogo dvukhkonturnogo dvigatelya s forsazhnoi kameroi sgoraniya s vpryskom vody za vkhodnym ustroistvom [Turbojet bypass engine with afterburner with water injection after input unit performance analysis]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2019, no. 1(153), pp. 29-38.DOI: 10.32620/aktt.2019.1.03.
Optimizatsiya i vybor parametrov rabochego protsessa GTD po samoletnym kriteriyam effektivnosti s ispol'zovaniem ASTRA-OPT [Optimization and selection of parameters of the GTE working process according to aircraft efficiency criteria using ASTRA-OPT]. Samara, Samarskiy gosudarstveniy aerokosmicheskiy universitet Publ., 2007. 40 p.
Kislov, O. V., Shevchenko, M. A. Metod vybora sostava i rezhima raboty silovoi ustanovki, rezhima raboty dlya letatel'nogo apparata so sverkhzvukovoi kreiserskoi skorost'yu [Method of Choosing Composition and Operation Mode of Propulsion, Operation Mode of Aircraft at Supersonic Cruising Speed]. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii – Open Information and Computer Integrated Technologies, 2020, no. 88, pp. 51-61. DOI: 10.32620/oikit.2020.88.04.
Eger, S. M., Mishin, V. F., Liseitsev, N. K. Proektirovanie samoletov [Aircraft Design]. Moscow, Mechanical Publ., 1983. 616 р.
Druzhinin, L. N., Shvets, L. I., Lanshin, A. I. Matematicheskoe modelirovanie GTD na sovremennykh EVM pri issledovanii parametrov i kharakteristik aviatsionnykh dvigatelei [Mathematical modelling of GTEs on modern computers in the study of parameters and characteristics of aircraft engines]. Trudy TsIAM, Moscow, 1979, no. 832. 46 p.
Kislov, O, Ambrozhevich, M., Shevchenko, M. Development of a method to improve the calculation accuracy of specific fuel consumption for performance modeling of air-breathing engines. Eastern-European Journal of Enterprise Technologies, 2021, vol. 2, no. 8 (110), pp. 23-30. DOI: 10.15587/1729-4061.2021.229515.
Kislov, O., Shevchenko, M. Development of a method for selecting a cruising mode and engine control program of a ramjet aircraft. Eastern-European Journal of Enterprise Technologies, 2021, vol. 3, no. 3 (111), pp. 6-14. DOI: 10.15587/1729-4061.2021.233850.
Morgenstern, J. et al. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period Phase 2. NASA Report, 2015, no. NASA/CR-2015-218719. 396 р. Available at: https://ntrs.nasa.gov/citations/20150015837 (аccessed 25.01.2022).
Shljahtenko, S. M. Teorija vozdushnoreaktivnyh dvigatelej [Theory of jet engines]. Moscow, Mechanical Publ., 1975. 567 p.
Kislov, O., Shevchenko, M. Osobennosti rascheta i regulirovaniya dvukhkonturnogo turboreaktivnogo dvigatelya s forsazhnoi kameroi sgoraniya v naruzhnom konture na pryamotochnykh rezhimakh raboty [Calculation and regulation features of duct-burning turbofan engine at ramjet modes]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2020, no. 6(166), pp. 15-23. DOI: 10.32620/aktt.2020.6.02.
Dugan, F. J., Koenig, R. W., Whitlow, J. B., McAuliffe, T. B. Turbojet and turbofan engines for a Mach 3supersonic transport. NASA Report, 1964, no. CR-64-21540. 12 р.
Kishalov, A. E., Markina, K. V. Issledovanie i prognozirovanie gazodinamicheskikh parametrov potoka kamer sgoraniya aviatsionnykh GTD [Research and prediction of thermal gas parameters flow combustion chambers of aviation GTE]. Vestnik UGATU, Ufa, USATU, 2017, no. 13(1), pp. 60-68.
Nechaev, Yu. N., Fedorov, R. M., Kotovskii, V. N., Polev, A. S. Teoriya aviatsionnykh dvigatelei [Theory of Aviation Engines]. Moscow, VVIA im. prof. N. E. Zhukovskogo Publ., 2006. 448 p.
Jaminson, R. R. Power Units for Very High Speed Winged Vehicles. Aerospace Proceeding, Bristol, England, 1966, pp. 484-513.
Van Rooij, M. P. C., Dang, T.Q., Larosiliere, L.M. Enhanced Blade Row Matching Capabilities via 3d Multistage Inverse Design and Pressure Loading Manager. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, June 9-13, 2008. Germany, Berlin, Paper No. GT2008-50539, pp. 2389-2399. DOI: 10.1115/GT2008-50539.
Demenchenok, V. P., Druzhinin, L. N., Parkhomov, A. L., Sosunov, V. A., Tskhovrebov, M. M., Shlyakhtenko, S. M., El'perina, A. S. Teoriya dvukhkonturnykh turboreaktivnykh dvigatelei [Theory of turbofan engines]. Moscow, Mashinostroenie Publ., 1979. 432 p.
DOI: https://doi.org/10.32620/aktt.2022.3.05