The stress distribution in the adhesive layer depending on the shape of the joint edge
Abstract
Keywords
Full Text:
PDF (Українська)References
Mittal, K. L., Panigrahi, S. K. Structural Adhesive Joints: Design, Analysis and Testing. Scrivener Publishing LLC, 2020. 352 p.
da Silva, L. F. M., das Neves, P. J. C., Adams, R. D., Spelt, J. K. Analytical models of adhesively bonded joints. Part I: Literature survey. Int. Journal Adhes. & Adhesiv, 2009, vol. 29, iss. 3, pp. 319 330. DOI: 10.1016/j.ijadhadh.2008.06.005.
Wong, E. H., Liu, J. Interface and interconnection stresses in electronic assemblies – A critical review of analytical solutions. Microelectronics Reliability, 2017, vol. 79, pp. 206 220. DOI: 10.1016/j.microrel.2017.03.010.
Budhe, S., Banea, M. D., de Barros, S., da Silva, L. F. M. An updated review of adhesively bonded joints in composite materials. International Journal of Adhesion and Adhesives, 2017, vol. 72, pp. 30-42. DOI: 10.1016/j.ijadhadh.2016.10.010.
Karpov, Ya. S. Jointing of high-loaded composite structural components. Part 2. Modeling of stress-strain state. Strength of Materials, 2006, vol. 38, iss. 5, pp. 481 491. DOI: 10.1007/s11223-006-0067-9.
Kurennov, S. S., Barakhov, K. P. The Stressed state of the double-layer rectangular plate under shift. The Simplified two-dimensional model. PNRPU Mechanics Bulletin, 2019, vol. 3, pp. 166-174. DOI: 10.15593/perm.mech/2019.3.16.
Kurennov, S. S. A Simplified Two-Dimensional Model of Adhesive Joints. Nonuniform Load. Mech. Compos. Mater., 2015, vol. 51, iss. 4, pp. 479-488. DOI: 10.1007/s11029-015-9519-2.
Kurennov, S., Barakhov, K., Dvoretska, D., Poliakov, O. Stress State of Two Glued Coaxial Tubes Under Nonuniform Axial Load. In: Nechyporuk M., Pavlikov V., Kritskiy D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2020. ICTM 2020. Lecture Notes in Networks and Systems, vol. 188. pp. 389-400. Springer, Cham. DOI: 10.1007/978-3-030-66717-7_33.
Kurennov, S. S. Determining Stresses in an Adhesive Joint with a Longitudinal Un-adhered Region Using a Simplified Two-Dimensional Theory. J. Appl. Mech. Tech. Phy., 2019, vol. 60, pp. 740–747. DOI: 10.1134/S0021894419040199.
Amidi, S., Wang, J. An analytical model for interfacial stresses in double-lap bonded joints. The J. Adhesion, 2018, vol. 95, iss. 11, pp. 1031-1055. DOI: 10.1080/00218464.2018.1464917.
Kurennov, S. S. Longitudinal-Flexural Vibrations of a Three-Layer Rod. An Improved Model. J. Math. Sci., 2016, vol. 215, iss. 2, pp. 159 169. DOI: 10.1007/s10958-016-2829-7.
Kurennov, S. S. Refined Mathematical Model of the Stress State of Adhesive Lap Joint: Experimental Determination of the Adhesive Layer Strength Criterion. Strength Materials, 2020, vol. 52, pp. 779-789. DOI: 10.1007/s11223-020-00231-5.
Kim, H. S., Cho, М., Lee, J., Deheeger, A., Grédiac, M., Mathias, J. D. Three dimensional stress analysis of a composite patch using stress functions Int. J. of Mechanical Sciences, 2010, vol. 52, pp. 1646–1659. DOI: 10.1016 / j.ijmecsci.2010.08.006.
Dua, Y., Liu, Y., Zhou, F. An improved four-parameter model on stress analysis of adhesive layer in plated beam. International Journal of Adhesion and Adhesives, 2019, vol. 91, pp. 1-11. DOI: 10.1016/j.ijadhadh.2019.02.005.
Frostig, Y., Thomsen, O. T., Mortensen, F. Analysis of adhesive-bonded joints, square-end, and spew-fillet—high-order theory approach. J. of Engineering Mechanics, 1999, vol. 125, pp. 1298-1307. DOI: 10.1061/(ASCE)0733-9399(1999)125:11(1298).
Radice, J. On the decoupled biharmonic airy stress function for the square-end adhesive layer and sandwich structure core. Journal of Sandwich Structures & Materials, 2021, vol. 23, iss. 1, pp. 23–46. DOI: 10.1177/1099636218818624.
Harris, J. A., Adams, R. A. Strength prediction of bonded single lap joints by non-linear finite element methods. International Journal of Adhesion and Adhesives, 1984, vol. 4, iss. 2, pp. 65–78. DOI: 10.1016/0143-7496(84)90103-9.
Kondratiev, A., Gaidachuk, V., Nabokina, T., Kovalenko, V. Determination of the influence of deflections in the thickness of a composite material on its physical and mechanical properties with a local damage to its wholeness. Eastern-European Journal of Enterprise Technologies, 2019, vol. 4, iss. 1 (100), pp. 6-13. DOI: 10.15587/1729-4061.2019.174025.
Cheuk, P. T., Tong, L. Failure of adhesive bonded composite lap shear joints with embedded precrack. Composites Science and Technology, 2002, vol. 62, iss. 7-8, pp. 1079–1095. DOI: 10.1016/s0266-3538(02)00054-4.
Wang, C. H., Rose, L. R. F. Compact solutions for the corner singularity in bonded lap joints. International Journal of Adhesion and Adhesives, 2000, vol. 20, iss. 2, pp. 145–154. DOI: 10.1016/s0143-7496(99)00032-9.
Kairouz, K. C., Matthews, F. L. Strength and failure modes of bonded single lap joints between cross-ply adherends. Composites, 1993, vol. 24, iss. 6, pp. 475–484. DOI: 10.1016/0010-4361(93)90017-3.
Goglio, L., Rossetto, M. Precision of the one-dimensional solutions for bonded double lap joints. International Journal of Adhesion and Adhesives, 2011, vol. 31, iss. 5, pp. 301–314. DOI: 10.1016/j.ijadhadh.2010.10.004.
Kurennov, S. S., Barakhov, K. P., Poliakov, A. G. Stressed State of the Axisymmetric Adhesive Joint of Two Cylindrical Shells under Axial Tension. Materials Science Forum, 2019, vol. 968, pp. 519–527. DOI: 10.4028/www.scientific.net/msf.968.519.
DOI: https://doi.org/10.32620/aktt.2022.3.01