Formation of one-dimensional oxide nanostructures by intermediate deposition of noble metals
Abstract
Keywords
Full Text:
PDF (Українська)References
Su, Y., Liu, T., Zhang, P., Zheng, P. CuO nanowire arrays synthesized at room temperature as a high-performance anode material for Li/Na-ion batteries. Thin Solid Films, 2019, no. 690, pp. 137522. DOI: 10.1016/j.tsf.2019.137522.
Butt, F. A., Anwar, M., Unal, U. Synthesis of metallic copper nanowires using dielectric barrier discharge plasma and their application in hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, no. 46, pp. 18866-18877. DOI: 10.1016/j.ijhydene.2021.03.020.
Steinhauer, S. Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors, 2021, no. 9, article no. 51. DOI: 10.3390/chemosensors9030051.
Abd-Elnaiem, A. M., Abdel-Rahim, M. A., Abdel-Latief, A. Y., Mohamed, A. A.-R., Mojsilovic, K., Stepniowski, W. J. Fabrication, Characterization and Photocatalytic Activity of Copper Oxide Nanowires Formed by Anodization of Copper Foams. Materials, 2021, no. 14, article no. 5030. DOI: 10.3390/ma14175030.
Shao, F., Hernández-Ramírez, F., Prades, J. D., Fàbrega, C., Andreu, T., Morante J. R. Copper (II) oxide nanowires for p-type conductometric NH3 sensing. Applied Surface Science, 2014, no. 311, pp. 177–181. DOI: 10.1016/j.apsusc.2014.05.038.
Yang, F., Guo, J., Liu, M., Yu, S., Yan, N., Li, J., Guo, Z. Design and understanding of a high-performance gas sensing material based on copper oxide nanowires exfoliated from a copper mesh substrate. Journal of Materials Chemistry A, 2015, no. 3, pp. 20477–20481. DOI: 10.1039/C5TA06806A.
Zhong, M. L., Zeng, D. C., Liu, Z. W., Yu, H. Y., Zhong, X. C., Qiu, W. Q. Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Materialia, 2010, no. 58, pp. 5926–5932. DOI: 10.1016/j.actamat.2010.07.008.
Duc, L. D., Le, D. T. T., Duy, N. V., Hoa, N. D., Hieu, N. V. Single crystal cupric oxide nanowires: Length- and density-controlled growth and gas-sensing characteristics. Physica E: Low-dimensional Systems and Nanostructures, 2014, no. 58, pp. 16–23. DOI: 10.1016/j.physe.2013.11.013.
Steinhauer, S., Brunet, E., Maier, T., Mutinati, G.C., Köck, A., Freudenberg, O., Gspan, C., Grogger, W., Neuhold, A., Resel, R. Gas sensing properties of novel CuO nanowire devices. Sensors and Actuators B: Chemical, 2013, no. 187, pp. 50–57. DOI: 10.1016/j.snb.2012.09.034.
Feng, Y., Zheng, X. Plasma-enhanced catalytic CuO nanowires for CO oxidation. Nano Letters, 2010, no. 10, pp. 4762–4766. DOI: 10.1021/nl1034545.
Scuderi, V., Amiard, G., Boninelli, S., Scalese, S., Miritello, M., Sberna, P. M., Impellizzeri, G., Privitera, V. Photocatalytic activity of CuO and Cu2O nanowires. Materials Science in Semiconductor Processing, 2016, no. 42, pp. 89–93. DOI: 10.1016/j.mssp.2015.08.008.
Wang, W., Wang, L., Shi, H., Liang, Y. A room temperature chemical route for large scale synthesis of sub-15 nm ultralong CuO nanowires with strong size effect and enhanced photocatalytic activity. CrystEngComm, 2012, no. 14, pp. 5914–5922. DOI: 10.1039/C2CE25666E.
Wang, W. N., Wu, F., Myung, Y., Niedzwiedzki, D. M., Im, H. S., Park, J., Banerjee, P., Biswas, P. Surface Engineered CuO Nanowires with ZnO Islands for CO2 Photoreduction. ACS Applied Materials & Interfaces, 2015, no. 7, pp. 5685–5692. DOI: 10.1021/am508590j.
Wang, L., Zhang, K., Hu, Z., Duan, W., Cheng, F., Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Research, 2014, no. 7, pp. 199–208. DOI: 10.1007/s12274-013-0387-6.
Su, Y., Liu, T., Zhang, P., Zheng, P. CuO nanowire arrays synthesized at room temperature as a high-performance anode material for Li/Na-ion batteries. Thin Solid Films, 2019, no. 690, pp. 137522. DOI: 10.1016/j.tsf.2019.137522.
Hansen, B. J., Kouklin, N., Lu, G., Lin, I. K., Chen, J., Zhang, X. Transport, analyte detection, and opto-electronic response of p-type CuO nanowires. The Journal of Physical Chemistry C, 2010, no. 114, pp. 2440–2447. DOI: 10.1021/jp908850j.
Tang, C., Liao, X., Zhong, W., Yu, H., Liu, Z. Electric field assisted growth and field emission properties of thermally oxidized CuO nanowires. RSC Advances, 2017, no. 7, pp. 6439–6446. DOI: 10.1039/C6RA27426A.
Majumdar, D., Ghosh, S. Recent advancements of copper oxide based nanomaterials for supercapacitor applications. Journal of Energy Storage, 2021, no. 34, pp. 101995. DOI: 10.1016/j.est.2020.101995.
Lee, C. S., Bae, J. Room-temperature growth (“farming”) and high-performance supercapacitor applications of highly crystalline CuO nanowires/graphene nanoplatelet nanopowders. Journal of Materials Science: Materials in Electronics, 2018, vol. 29, no. 17, pp. 15097–15105. DOI: 10.1007/s10854-018-9650-7.
Xu, K., Yan, H., Tan, C. F., Lu, Y., Li, Y., Ho, G. W., Ji, R., Hong, M. Hedgehog Inspired CuO Nanowires/Cu2O Composites for Broadband Visible-Light-Driven Recyclable Surface Enhanced Raman Scattering. Advanced Optical Materials, 2018, vol. 6, no. 7, pp. 1701167. DOI: 10.1002/adom.201701167.
Gonçalves, A. M. B., Campos, L. C., Ferlauto, A. S., Lacerda, R. G. On the growth and electrical characterization of CuO nanowires by thermal oxidation. Journal of Applied Physics, 2009, vol. 106, no. 3, article no. 034303. DOI: 10.1063/1.3187833.
Filipic, G., Baranov, O., Mozetic, M., Cvelbar, U. Growth dynamics of copper oxide nanowires in plasma at low pressures. Journal of Applied Physics, 2015, no. 117, article no. 043304. DOI: 10.1063/1.4906501.
Yuan, L., Wang, Y., Mema, R., Zhou, G. Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Materialia, 2011, no. 59, pp. 2491–2500. DOI: 10.1016/j.actamat.2010.12.052.
Filipic, G., Baranov, O., Mozetic, M., Ostrikov, K., Cvelbar, U. Uniform surface growth of copper oxide nanowires in radiofrequency plasma discharge and limiting factors. Physics of Plasmas, 2014, no. 21, article no. 113506. DOI: 10.1063/1.4901813.
Baranov, O. Filipič, G., Cvelbar, U. Towards a highly-controllable synthesis of copper oxide nanowires in radio-frequency reactive plasma: fast saturation at the targeted size. Plasma Sources Science and Technology, 2019, no. 28, article no. 084002. DOI: 10.1088/1361-6595/aae12e.
Altaweel, A., Filipič, G., Gries, T., Belmonte, T. Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow. Journal of Crystal Growth, 2014, no. 407, pp. 17–24. DOI: 10.1016/j.jcrysgro.2014.08.029.
Baranov, O., Košiček, M., Filipič, G., Cvelbar, U. A deterministic approach to the thermal synthesis and growth of 1D metal oxide nanostructures. Applied Surface Science, 2021, vol. 566, no. 15, article no. 150619. DOI: 10.1016/j.apsusc.2021.150619.
Breus, A., Abashin, S., Serdiuk, O., Baranov, O. Linking Dynamics of Growth of Copper Oxide Nanostructures in Air. Lecture Notes in Networks and Systems, 2022, vol. 367, pp. 555–564. DOI: 10.1007/978-3-030-94259-5_47.
Bazaka, K., Baranov, O., Cvelbar, U., Podgornik, B., Wang, Y., Huang, S., Xu, L., Lim, J. W. M., Levchenko, I., Xu, S. Oxygen plasmas: a sharp chisel and handy trowel for nanofabrication. Nanoscale, 2018, no. 10, pp. 17494-17511. DOI: 10.1039/C8NR06502K.
Sun, S., Li, Ch., Zhang, D., Wang, Y. Density functional theory study of the adsorption and dissociation of O2 on CuO(111) surface. Applied Surface Science, 2015, no. 333, pp. 229-234. DOI: 10.1016/j.apsusc.2015.02.018.
Hu, J., Li, D., Lu, J. G., Wu, R. Effects on Electronic Properties of Molecule Adsorption on CuO Surfaces and Nanowires. The Journal of Physical Chemistry C, 2010, vol. 114, no. 40, pp. 17120–17126. DOI: 10.1021/jp1039089.
Zhang, R., Liu, H., Zheng, H., Ling, L., Li, Z., Wang, B. Adsorption and dissociation of O2 on the Cu2O (111) surface: thermochemistry, reaction barrier. Applied Surface Science, 2011, no. 257, pp. 4787-4794. DOI: 10.1016/j.apsusc.2010.12.040.
Peterson, N. L. Diffusion and Point Defects in Cu2O. Journal of Physics and Chemistry of Solids, 1984, vol. 45, no. 3, pp. 281–294. DOI: 10.1016/0022-3697(84)90033-7.
Zhu, Y., Mimura, K., Lim, J.-W., Isshiki, M., Jiang, Q. Brief Review of Oxidation Kinetics of Copper at 350 °C to 1050 °C. Metallurgical and Materials Transactions A, 2006, no. 37, pp. 1231–1237. DOI: 10.1007/s11661-006-1074-y.
Zhu, Y., Mimura, K., Isshiki, M. Oxidation Mechanism of Copper at 623–1073 K. Materials Transactions, 2002, vol. 43, no. 9, pp. 2173–2176. DOI: 10.2320/matertrans.43.2173.
DOI: https://doi.org/10.32620/aktt.2022.2.03