Formation of one-dimensional oxide nanostructures by intermediate deposition of noble metals

Олег Олегович Баранов

Abstract


A method for forming the geometry of one-dimensional nanostructures (nanowires) of copper oxide is proposed, which allows for a significant increase in the ratio of their length to diameter, which is critical for certain practical applications. The essence of the method is that after reaching the saturation regime of the dependence of the length of the nanowire on the time of its growth, the stage of deposition of precious metal (gold) is realized, the nanoparticles of which are fixed on the side surface of the nanowire. In the saturation mode, the entire flow of copper atoms moving from the root to the top of the nanowire reacts on the side surface of the nanowire due to collisions with oxygen molecules adsorbed by this surface. But the presence of a metal that does not react with oxygen significantly reduces the concentration of the latter on the side surface of the nanowire. The presence of a noble metal, which covers most of the nanowire, significantly reduces the intensity of the oxidation reaction of copper on the side of the nanowire, thus lengthening the diffusion path of copper from root to tip of the nanowire, thereby increasing its length. Therefore, after the stage of intermediate deposition, the growth process of the nanowires is restored. The process of intermediate deposition of unreacted metal can be applied more than once, which allows for flexible control of the process of nanowire formation. From the viewpoint of the general productivity of the process, it is critical to use plasma to implement the process of nanowire growth because it is the processes in the plasma environment that are characterized by the rapid achievement of the saturation mode of time dependence, which is proven experimentally. As a result, the overall productivity of the combined process using the intermediate deposition of the noble metal can be accelerated up to five times compared to the currently common thermal growth processes. Calculations using a modified mathematical model of growth of one-dimensional nanostructures of copper oxide in a thermal reactor, which is used to predict growth in plasma under atmospheric pressure (radiofrequency, capacitive, etc.), where conditions are similar to thermal growth. The method is general and can be applied to other growth processes that depend on the reactions on the surfaces of nanostructures.

Keywords


nanotechnology; copper oxide; nanowires; plasma; modeling

References


Su, Y., Liu, T., Zhang, P., Zheng, P. CuO nanowire arrays synthesized at room temperature as a high-performance anode material for Li/Na-ion batteries. Thin Solid Films, 2019, no. 690, pp. 137522. DOI: 10.1016/j.tsf.2019.137522.

Butt, F. A., Anwar, M., Unal, U. Synthesis of metallic copper nanowires using dielectric barrier discharge plasma and their application in hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, no. 46, pp. 18866-18877. DOI: 10.1016/j.ijhydene.2021.03.020.

Steinhauer, S. Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors, 2021, no. 9, article no. 51. DOI: 10.3390/chemosensors9030051.

Abd-Elnaiem, A. M., Abdel-Rahim, M. A., Abdel-Latief, A. Y., Mohamed, A. A.-R., Mojsilovic, K., Stepniowski, W. J. Fabrication, Characterization and Photocatalytic Activity of Copper Oxide Nanowires Formed by Anodization of Copper Foams. Materials, 2021, no. 14, article no. 5030. DOI: 10.3390/ma14175030.

Shao, F., Hernández-Ramírez, F., Prades, J. D., Fàbrega, C., Andreu, T., Morante J. R. Copper (II) oxide nanowires for p-type conductometric NH3 sensing. Applied Surface Science, 2014, no. 311, pp. 177–181. DOI: 10.1016/j.apsusc.2014.05.038.

Yang, F., Guo, J., Liu, M., Yu, S., Yan, N., Li, J., Guo, Z. Design and understanding of a high-performance gas sensing material based on copper oxide nanowires exfoliated from a copper mesh substrate. Journal of Materials Chemistry A, 2015, no. 3, pp. 20477–20481. DOI: 10.1039/C5TA06806A.

Zhong, M. L., Zeng, D. C., Liu, Z. W., Yu, H. Y., Zhong, X. C., Qiu, W. Q. Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Materialia, 2010, no. 58, pp. 5926–5932. DOI: 10.1016/j.actamat.2010.07.008.

Duc, L. D., Le, D. T. T., Duy, N. V., Hoa, N. D., Hieu, N. V. Single crystal cupric oxide nanowires: Length- and density-controlled growth and gas-sensing characteristics. Physica E: Low-dimensional Systems and Nanostructures, 2014, no. 58, pp. 16–23. DOI: 10.1016/j.physe.2013.11.013.

Steinhauer, S., Brunet, E., Maier, T., Mutinati, G.C., Köck, A., Freudenberg, O., Gspan, C., Grogger, W., Neuhold, A., Resel, R. Gas sensing properties of novel CuO nanowire devices. Sensors and Actuators B: Chemical, 2013, no. 187, pp. 50–57. DOI: 10.1016/j.snb.2012.09.034.

Feng, Y., Zheng, X. Plasma-enhanced catalytic CuO nanowires for CO oxidation. Nano Letters, 2010, no. 10, pp. 4762–4766. DOI: 10.1021/nl1034545.

Scuderi, V., Amiard, G., Boninelli, S., Scalese, S., Miritello, M., Sberna, P. M., Impellizzeri, G., Privitera, V. Photocatalytic activity of CuO and Cu2O nanowires. Materials Science in Semiconductor Processing, 2016, no. 42, pp. 89–93. DOI: 10.1016/j.mssp.2015.08.008.

Wang, W., Wang, L., Shi, H., Liang, Y. A room temperature chemical route for large scale synthesis of sub-15 nm ultralong CuO nanowires with strong size effect and enhanced photocatalytic activity. CrystEngComm, 2012, no. 14, pp. 5914–5922. DOI: 10.1039/C2CE25666E.

Wang, W. N., Wu, F., Myung, Y., Niedzwiedzki, D. M., Im, H. S., Park, J., Banerjee, P., Biswas, P. Surface Engineered CuO Nanowires with ZnO Islands for CO2 Photoreduction. ACS Applied Materials & Interfaces, 2015, no. 7, pp. 5685–5692. DOI: 10.1021/am508590j.

Wang, L., Zhang, K., Hu, Z., Duan, W., Cheng, F., Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Research, 2014, no. 7, pp. 199–208. DOI: 10.1007/s12274-013-0387-6.

Su, Y., Liu, T., Zhang, P., Zheng, P. CuO nanowire arrays synthesized at room temperature as a high-performance anode material for Li/Na-ion batteries. Thin Solid Films, 2019, no. 690, pp. 137522. DOI: 10.1016/j.tsf.2019.137522.

Hansen, B. J., Kouklin, N., Lu, G., Lin, I. K., Chen, J., Zhang, X. Transport, analyte detection, and opto-electronic response of p-type CuO nanowires. The Journal of Physical Chemistry C, 2010, no. 114, pp. 2440–2447. DOI: 10.1021/jp908850j.

Tang, C., Liao, X., Zhong, W., Yu, H., Liu, Z. Electric field assisted growth and field emission properties of thermally oxidized CuO nanowires. RSC Advances, 2017, no. 7, pp. 6439–6446. DOI: 10.1039/C6RA27426A.

Majumdar, D., Ghosh, S. Recent advancements of copper oxide based nanomaterials for supercapacitor applications. Journal of Energy Storage, 2021, no. 34, pp. 101995. DOI: 10.1016/j.est.2020.101995.

Lee, C. S., Bae, J. Room-temperature growth (“farming”) and high-performance supercapacitor applications of highly crystalline CuO nanowires/graphene nanoplatelet nanopowders. Journal of Materials Science: Materials in Electronics, 2018, vol. 29, no. 17, pp. 15097–15105. DOI: 10.1007/s10854-018-9650-7.

Xu, K., Yan, H., Tan, C. F., Lu, Y., Li, Y., Ho, G. W., Ji, R., Hong, M. Hedgehog Inspired CuO Nanowires/Cu2O Composites for Broadband Visible-Light-Driven Recyclable Surface Enhanced Raman Scattering. Advanced Optical Materials, 2018, vol. 6, no. 7, pp. 1701167. DOI: 10.1002/adom.201701167.

Gonçalves, A. M. B., Campos, L. C., Ferlauto, A. S., Lacerda, R. G. On the growth and electrical characterization of CuO nanowires by thermal oxidation. Journal of Applied Physics, 2009, vol. 106, no. 3, article no. 034303. DOI: 10.1063/1.3187833.

Filipic, G., Baranov, O., Mozetic, M., Cvelbar, U. Growth dynamics of copper oxide nanowires in plasma at low pressures. Journal of Applied Physics, 2015, no. 117, article no. 043304. DOI: 10.1063/1.4906501.

Yuan, L., Wang, Y., Mema, R., Zhou, G. Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Materialia, 2011, no. 59, pp. 2491–2500. DOI: 10.1016/j.actamat.2010.12.052.

Filipic, G., Baranov, O., Mozetic, M., Ostrikov, K., Cvelbar, U. Uniform surface growth of copper oxide nanowires in radiofrequency plasma discharge and limiting factors. Physics of Plasmas, 2014, no. 21, article no. 113506. DOI: 10.1063/1.4901813.

Baranov, O. Filipič, G., Cvelbar, U. Towards a highly-controllable synthesis of copper oxide nanowires in radio-frequency reactive plasma: fast saturation at the targeted size. Plasma Sources Science and Technology, 2019, no. 28, article no. 084002. DOI: 10.1088/1361-6595/aae12e.

Altaweel, A., Filipič, G., Gries, T., Belmonte, T. Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow. Journal of Crystal Growth, 2014, no. 407, pp. 17–24. DOI: 10.1016/j.jcrysgro.2014.08.029.

Baranov, O., Košiček, M., Filipič, G., Cvelbar, U. A deterministic approach to the thermal synthesis and growth of 1D metal oxide nanostructures. Applied Surface Science, 2021, vol. 566, no. 15, article no. 150619. DOI: 10.1016/j.apsusc.2021.150619.

Breus, A., Abashin, S., Serdiuk, O., Baranov, O. Linking Dynamics of Growth of Copper Oxide Nanostructures in Air. Lecture Notes in Networks and Systems, 2022, vol. 367, pp. 555–564. DOI: 10.1007/978-3-030-94259-5_47.

Bazaka, K., Baranov, O., Cvelbar, U., Podgornik, B., Wang, Y., Huang, S., Xu, L., Lim, J. W. M., Levchenko, I., Xu, S. Oxygen plasmas: a sharp chisel and handy trowel for nanofabrication. Nanoscale, 2018, no. 10, pp. 17494-17511. DOI: 10.1039/C8NR06502K.

Sun, S., Li, Ch., Zhang, D., Wang, Y. Density functional theory study of the adsorption and dissociation of O2 on CuO(111) surface. Applied Surface Science, 2015, no. 333, pp. 229-234. DOI: 10.1016/j.apsusc.2015.02.018.

Hu, J., Li, D., Lu, J. G., Wu, R. Effects on Electronic Properties of Molecule Adsorption on CuO Surfaces and Nanowires. The Journal of Physical Chemistry C, 2010, vol. 114, no. 40, pp. 17120–17126. DOI: 10.1021/jp1039089.

Zhang, R., Liu, H., Zheng, H., Ling, L., Li, Z., Wang, B. Adsorption and dissociation of O2 on the Cu2O (111) surface: thermochemistry, reaction barrier. Applied Surface Science, 2011, no. 257, pp. 4787-4794. DOI: 10.1016/j.apsusc.2010.12.040.

Peterson, N. L. Diffusion and Point Defects in Cu2O. Journal of Physics and Chemistry of Solids, 1984, vol. 45, no. 3, pp. 281–294. DOI: 10.1016/0022-3697(84)90033-7.

Zhu, Y., Mimura, K., Lim, J.-W., Isshiki, M., Jiang, Q. Brief Review of Oxidation Kinetics of Copper at 350 °C to 1050 °C. Metallurgical and Materials Transactions A, 2006, no. 37, pp. 1231–1237. DOI: 10.1007/s11661-006-1074-y.

Zhu, Y., Mimura, K., Isshiki, M. Oxidation Mechanism of Copper at 623–1073 K. Materials Transactions, 2002, vol. 43, no. 9, pp. 2173–2176. DOI: 10.2320/matertrans.43.2173.




DOI: https://doi.org/10.32620/aktt.2022.2.03