Estimation of fatigue strength at an asymmetric loading cycle

Борис Петрович Калінін

Abstract


The object of study in the article is the individual parts of aircraft units, applied to loads that change over time. The subject of study is models that describe fatigue resistance under asymmetric loads. The goal is to develop a fairly simple engineering technique for detecting parts of aircraft units operating under an asymmetric loading cycle. Tasks: general analysis of many approaches to design cycles before the destruction of parts of aircraft units, production with an asymmetric loading cycle; select calculations acceptable for practical calculations, determine the endurance limit under a symmetrical loading cycle for steels and aluminum alloys used in aircraft units; select a calculation to calculate the maximum amount of asymmetric cycle. Methods used engineering analysis of methods for constructing a fatigue curve for an asymmetric speed change cycle; calculation of the endurance limit for a symmetrical cycle of change depending on the properties of materials based on the results of experimental selection and calculation of the endurance limit of materials to calculate the endurance limits of materials; the finite element method for counting and increasing dimensions in parts in the Simulation software package in Solidworks packages. The obtained results are obtained: an equation is chosen for the structure of the curve with an asymmetric cycle of stress change, given mechanical properties of the material; selections are selected for calculation with acceptable accuracy according to the specified properties of the endurance limits of materials with a symmetrical loading cycle of steels and aluminum alloys used in aircraft units; calculations were selected to calculate the limiting value of the asymmetric oscillation of the cycle; a method for determining the constants of the Weibull distribution for the fatigue curve under an asymmetric load cycle is proposed. Conclusion: an engineering technique has been developed for determining the resistance of parts of aircraft units operating under loads that change over time according to an asymmetric cycle.

Keywords


fatigue strength; fatigue resistance; asymmetric cycle; fatigue curve; endurance; Weibull distribution

References


Sosnovskyy, L. A., Taranova, E. S., Tyuryn, S. A. O polnoi krivoi ustalosti [About the full fatigue curve]. Mekhanika mashin, mekhanizmov i materialov, 2012, no. 2, pp. 41-49.

Troshchenko, V. T., Sosnovskyy, P. A. Soprotivlenie ustalosti metallov i splavov [Fatigue resistance of metals and alloys], Kyev, Naukova Dumka Publ., 1987. 1256 p.

Bai, Y., Jin, W.-L. Chapter 26 – Fatigue Loading and Stresses. Marine Structural Design (Second Edition), 2016, pp. 509-525. DOI: 10.1016/B978-0-08-099997-5.00026-5.

Wang, L., Chen, Y., Wang, C., Wang, Q. Fatigue Life Analysis of Aluminum Wheels by Simulation of Rotary Fatigue Test. Journal of Mechanical Engineering, 2011, vol. 57, pp. 31-39. DOI: 10.5545/sv-jme.2009.046.

Gajdoš, L., Šperl, M. Fracture Mechanics Based Analysis of the Fatigue Life of Defective Welded Joints. Materials Transactions, 2020. vol. 61, iss. 5, pp. 926-934. DOI: 10.2320/matertrans.MT-M2019258.

Uzhik, V. (Ed.) Ustalost' i vynoslivost' metallov. Sb. statei. [Fatigue and endurance of metals. Collection of articles]. Moscow, Foreign lit. Publ., 1963. 497 p.

Matveev, V. V. K obosnovaniyu ispol'zovaniya deformatsionnykh kriteriev mnogotsiklovogo ustalostnogo razrusheniya metallov [To justify the use of deformation criteria for high-cycle fatigue failure of metals]. Problemy prochnosti – Problems of strength, 1995, no. 5, pp. 3-12.

Bolotin, V. V. Prognozirovanie resursa mashin i konstruktsii [Forecasting the resource of machines and structures]. Moscow, Mashinostroenie Publ., 1984. 312 p.

Veibul, V. Ustalostnye ispytaniya i analiz ikh rezul'tatov [Fatigue testing and analysis of their results]. Moscow, Mashgiz Publ., 1964. 310 p.

Böhm, M., Kluger, K., Pochwała, S., Kupina, M. Application of the S-N Curve Mean Stress Correction Model in Terms of Fatigue Life Estimation for Random Torsional Loading for Selected Aluminum Alloys. Materials, 2020, vol. 13, iss. 13, article no. 2985. 16 p. DOI: 10.3390/ma13132985.

Grebenik, V. M. Ustalostnaya prochnost' i dolgovechnost' metallurgicheskogo oborudovaniya [Fatigue strength and durability of metallurgical equipment]. Moscow, Mashinostroenie Publ., 1969. 256 p.

Sosnovsky, D. A. Opyt statisticheskogo analiza rezul'tatov mekhanicheskikh ispytanii na mashinostroitel'nom zavode i razrabotka metodov ekspressnoi otsenki mekhanicheskikh svoistv konstruktsionnoi stali. Avtoref. dys. ... kand. tekhn. nauk [Experience of statistical analysis of the results of mechanical tests at a machine-building plant and the development of methods for express evaluation of the mechanical properties of structural steel. Avtoref. diss. … cand. tech. sci.]. Aleksandrovsk, 1970. 15 p.

Stepnov, M. N., Evstratova, S. P., Borisova, V. V. Kosvennaya otsenka predelov vynoslivosti stalei i alyuminievykh splavov [Indirect estimation of endurance limits of steels and aluminum alloys]. Zavodskaya laboratoriya – Factory laboratory, 1981, no. 3, pp. 67-69.

Aviatsionnyi spravochnik. Raschetnye znacheniya kharakteristik aviatsionnykh metalli-cheskikh konstruktsionnykh materialov [Aviation directory. Estimated values of the characteristics of aviation metal structural materials]. Moscow. OAK, TsAGY Publ., 2013. 302 p.

Konovalov, V. V., Dubinskii, S. V., Makarov, A. D., Dotsenko, A. M. Issledovanie korrelyatsionnykh zavisimostei mezhdu mekhanicheskimi svoistvami aviatsionnykh materialov [Investigation of correlation dependences between the mechanical properties of aviation materials]. Aviatsionnye materialy i tekhnologii – Aviation materials and technologies, 2018, no. 2, pp. 40-45.




DOI: https://doi.org/10.32620/aktt.2022.1.06