Improvement of the repair method of the aircraft components made of polymer composite materials with operational damage

Oleksii Andrieiev, Kateryna Maiorova, Borys Lupkin, Maksym Boiko, Yurii Korolkov

Abstract


The subject of study in this article is the repair method of the aircraft (A/C) components made of polymer composite materials (PCM) with operational damage. This article improves the repair method of the A/C PCM components with cracks and holes. Objectives: to improve the repair method of operational damage of the A/C PCM components by layer-by-layer removal of the defective area using a milling tool; propose dependencies to determine the serviceability period of the damaged area, considering the safety factor and geometric parameters of the defect. The following methods are used: analysis of existing and common repair methods of the A/C PCM components, mathematical approaches for their evaluation based on solving systems of equations. According to the analysis, the shortcomings of existing and common repair methods of the A/C PCM components with cracks and holes are identified. A proposal is made to improve the adhesive repair method of the A/C PCM components by using a milling tool with a curved cutting edge with a radius of curvature from 3 mm to 5 mm. The main stages of such repair are updated by filling the repair area with isotropic polymer paste. The dependencies of the geometrical parameters of layer-by-layer milling on the strength of the A/C PCM components are shown, considering the operating loads, calculated loads, and safety factors. The scientific novelties of the obtained results are as follows: the repair method of the A/C PCM components with operational damage using layer-by-layer milling with shaped radial mill to remove PCM layers in the defective area followed by filling the repair area with isotropic polymer paste is improved; the dependencies of geometric and strength parameters of the defective area of the A/C PCM components are established, which allow to easily determine the time of defect development before the destruction of the structure and the temporary period of serviceability of the A/C PCM components. The proposed improvement of the repair method will increase the period of operation of the A/C PCM components in general, which may be the next study.

Keywords


aircraft; polymer composite material; repair; operational damage; layer-by-layer milling; strength

Full Text:

PDF

References


Fayomi O. S., Babaremu K. O., Akande G. Mechanical behavior of composite materials in metal. International Journal of Mechanical Engineering and Technology (IJMET), 2019, vol. 10, iss. 3, pp. 19-30.

Nytka, S. M. Pidvyshchennya nesuchoyi zdatnosti elementiv konstruktsiyi iz polimernykh kompozytsiynykh materialiv shlyakhom poperechnoho armuvannya [Increasing the bearing capacity of structural elements made of polymer composite materials by transverse reinforcement]. Materialy XV mizhnarodnoyi naukovo-tekhnichnoyi konferentsiyi «AVIA-2021», 2021, pp. 36-40. (In Ukrainian).

Fayomi, O. S. I., Babaremu, K. O., Akande, I. G. Impact of Al-Composites in the Manufacturing Industry: A Neccessity. International Journal of Civil Engineering and Technology, 2019, vol. 10, no. 3, pp. 92–102.

Murashov, V. V. Kontrol' kachestva aviatsionnykh detalei iz polimernykh kompozitsionnykh materialov i mnogosloinykh kleenykh konstruktsii [Quality control of aviation parts made of polymer composite materials and multilayer glued structures]. Aviatsionnye materialy i tekhnologii, 2013, no. 3, pp. 65-70. (In Russian).

Maiorova, K., Vorobiov, Iu., Boiko, M., Suponina, V., Komisarov, O. Implementation of reengineering technology to ensure the predefined geometric accuracy of a light aircraft keel. Eastern-European Journal of Enterprise Technologies, 2021, vol. 6, no. 1(114), pp. 6-12. DOI: 10.15587/1729-4061.2021.246414.

Astanin, V. V., Hloba, O. V., Shevchenko, O. A. Ekspluatatsiyni poshkodzhennya elementiv konstruktsiy lital'nykh aparativ iz kompozytsiynykh materialiv i metody yikh remontu [Operational damage of aircraft composite structural elements and methods of their repair]. Tekhnologicheskie sistemy: materialy pervoi tekhnicheskoi konferentsii ukrainskogo otdeleniya mezhdunarodnogo obshchestva po prodvizheniyu materialov i tekhnologii (SAMPE), 2011, no. 4(57), pp. 64-68. (In Ukrainian).

Andreev, A. V., Bychkov, S. A., Kondrat'ev, A. V. Ekspluatatsionnaya nesushchaya sposobnost' konstruktsii otechestvennykh i zarubezhnykh vozdushnykh sudov transportnoi kategorii iz polimernykh kompozitsionnykh materialov. Chast' 2. Analiz vidov, kharaktera i chastoty ekspluatatsionnykh povrezhdenii [Operational bearing capacity of structures of domestic and foreign aircraft of the transport category from polymer composite materials. Part 2. Analysis of the types, nature and frequency of operational damage]. Vіsnyk ONMU: zb. nauk. pr, 2016, no. 2(48), pp. 180-194. (In Ukrainian).

Gaidachuk, A. V., Kondrat'ev, A. V., Omel'chenko, E. V. Analiz tekhnologicheskikh defektov, voznikayushchikh v seriinom proizvodstve integral'nykh aviakonstruktsii iz polimernykh kompozitsionnykh materialov [Analysis of technological defects arising in the serial production of integral aircraft structures from polymer composite materials]. Aviacijno-kosmicna tehnika i tehnologia [Aerospace technic and technology], 2010, no. 3(70), pp. 11-20. (In Russian).

Bulakh, I. O., Hloba, O. V. Analiz metodiv neruynuyuchoyi defektoskopiyi vyrobiv z kompozytsiynykh materialiv [Analysis of methods of non-destructive testing of products made of composite materials] Visnyk Chernihivs'koho derzhavnoho tekhnolohichnoho universytetu. Seriya : Tekhnichni nauky, 2013, no. 2, pp. 36-42. (In Ukrainian).

Hloba, O. V., Shevchenko, O. A. Remont poshkodzhen' elementiv konstruktsiy iz kompozytsiynykh materialiv z vykorystannyam komp"yuteryzovanoyi systemy ta kompleksu instrumental'nykh zasobiv [Damage repair of structural elements made of composite materials using a computerized system and a set of tools]. Visnyk Natsional'noho tekhnichnoho universytetu Ukrayiny «Kyyivs'kyy politekhnichnyy instytut». Seriya Mashynobuduvannya, 2011, no. 62, pp. 76-80. (In Ukrainian).

Andreev, A. V. Osobennosti remonta detalei iz polimernykh kompozitsionnykh materialov pri pomoshchi avtonomnogo remontnogo oborudovaniya [Repair features of parts made of polymer composite materials using autonomous repair equipment]. Mechanics and Advanced Technologies: sb. nauch. tr. Natsional'nogo tekhnicheskogo universiteta «KPI», 2018, no. 3(84), pp. 69-74. (In Russian).

Sebastien Hanser, Guillaume Ferrer, Sebastien Dupouv. New technology for new aircraft. JEC Composites, May – June, 2019, no. 128, pp. 44-46.

Collombe, F., Davila, Y. et al. Proof of a composite repair concept for aeronautical structures: a simplified method. Mechanics & Industry, 2019, vol. 20, no. 8, pp. 1-14. DOI: 10.1051/meca/2020056.

Lupkin, B. V., Nitka, V. S. Metod remonta agregatov iz kompozitsionnykh materialov s trubchatym (sotovym) zapolnitelem v polevykh usloviyakh [Repair method of composite materials units with tubular (honeycomb) filler in the field]. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii, 2014, no. 63, pp. 33-41. (In Russian).

Kley VK-25 [Glue VK-25]. Available at: http://alfa-sintez.com/klei_VK-25.html (accessed 12.01.2021) (In Russian).

Romano, M. G., Guida, M., Marulo, F., Auriccio, M. G. & Russo, S. Characterization of Adhesives Bonding in Aircraft Structures. Materials, 2020, vol. 13, iss. 21, article no. 4816, pp. 1-13. DOI: 10.3390/ma13214816.

Volokna dlya armirovaniya kompozitsionnykh materialov [Fibers for reinforcing composite materials]. Available at: https://poznayka.org/s77441t1.html (accessed 12.01.2021) (In Russian).

Limonin, M. V., Dudarkov, Y. I., Levchenko, E. A. Numerical estimation of in-service damages’ effect on the loadbearing capacity of composite aircraft structures elements. Advances in Composites Science and Technologies (ACST 2020), 2020, vol. 1990, pp. 1-5. DOI: 10.3390/ma13214816.

Aßmus, M., Naumenko, K., Öchsner, A. & Altenbach, H. A generalized framework towards structural mechanics of three-layered composite structures. Technische Mechanik, 2019, vol. 39, no. 2, pp. 202-219. DOI: 10.24352/UB.OVGU-2019-019.

Aviatsionnye pravila. Chast' 25. Normy letnoi godnosti samoletov transportnoi kategorii [Aviation rules. Part 25. Airworthiness standards for transport category aircraft]. OAO «AVIAIZDAT» Publ., 2009. 274 p. Available at: http://www.gostrf.com/normadata/1/4293795/4293795750.pdf (accessed 12.01.2021). (In Russian).

Aßmus, M. Structural Mechanics of Anti-Sandwiches. An Introduction. SpringerBriefs in Continuum Mechanics. Springer, Cham, 2019. 128 p. DOI: 10.1007/978-3-030-04354-4.




DOI: https://doi.org/10.32620/aktt.2022.1.05