Using visual metrics to analyze lossy compression of noisy images
Abstract
Keywords
Full Text:
PDF (Українська)References
Garcia-Salgado, B., Ponomaryov, V., Sadovnychiy, S., Reyes-Reyes, R. Efficient dimension reduction of hyperspectral images for big data remote sensing applications. J. of Applied Remote Sensing, 2020, vol. 14, no. 3, article no. 032611. DOI: 10.1117/1.JRS.14.032611.
Manga, I., Garba, E. J., Ahmadu, A. S. Lossless Image Compression Schemes: A Review. Journal of Scientific Research and Reports, 2021, pp. 14-22. DOI: 10.9734/jsrr/2021/v27i630398.
Chen, J., Deng, Z., Wang, Y., Cheng, X., Ye, Y., Zhang, X., Han, J. Image Compression Algorithm Based on Time Series. Artificial Intelligence and Security, 2021, pp. 689-700. DOI: 10.1007/978-3-030-78609-0_58.
Christophe, E., Prasad, S., Bruce, L., M., Chanussot, J. Hyperspectral data compression tradeoff. Optical remote sensing, Berlin, Heidelberg, Springer, 2011, vol. 3, pp. 9-29. DOI: 10.1007/978-3-642-14212-3_2.
Zabala, A., Pons, X. Impact of lossy compression on mapping crop areas from remote sensing. International Journal of Remote Sensing, 2013, vol. 34, no. 8, pp. 2796-2813. DOI: 10.1080/01431161.2012.750772.
Al-Shaykh, O. K., Mersereau, R. M. Lossy compression of noisy images. IEEE Transactions on Image Processing, 1998, vol. 7, no. 12, pp. 1641-1652. DOI: 10.1109/83.730376.
Chang, S. G., Yu, B., Vetterli, M. Image denoising via lossy compression and wavelet thresholding. Proceedings of International Conference on Image Processing, 1997, pp. 604-607 DOI: 10.1109/ICIP.1997.647985.
Ponomarenko, N., Krivenko, S., Lukin, V., Egiazarian, K., Astola, J. Lossy Compression of Noisy Images Based on Visual Quality: a Comprehensive Study. EURASIP Journal on Advances in Signal Processing, article no. 976436, 2010. DOI: 10.1155/2010/976436.
Bellard, F. BPG Image format. Available at: https://bellard.org/bpg/. (accessed 27.09.2021).
Albalawi, U., Mohanty, S. P., Kougianos, E. A Hardware Architecture for Better Portable Graphics (BPG) Compression Encoder. IEEE International Symposium on Nanoelectronic and Information Systems (iNIS), 2015. DOI: 10.1109/iNIS.2015.12.
Baranik, V. V., Shiryaev, A. V. Metod kvadraturnogo szhatiya transformant veivlet-preobrazovaniya v dvumernom poliadicheskom prostranstve [Method of quadrature compression of a wavelet transform transformant in a two-dimensional polyadic space]. Suchasna spetsial'na tekhnika – Modern special technique, 2011, no. 2 (25), pp. 73-80.
Chatterjee, P., Milanfar, P. Is Denoising Dead? IEEE Transactions on Image Processing, 2010, vol. 19, Iss. 4, pp. 895-911. DOI: 10.1109/TIP.2009.2037087.
Egiazarian, K., Astola, J., Ponomarenko, N., Lukin, V., Battisti, F., Carli, M. New full-reference quality metrics based on HVS. Proceedings of the 2nd International Workshop on Video Processing and Quality Metrics, 2006, pp. 1–4.
Ponomarenko, N., Silvestri, F., Egiazarian, K., Astola, J., Carli, M., Lukin, V. On between-coefficient contrast masking of DCT basis functions. Proceedings of the 3rd International Workshop on Video Processing and Quality Metrics for Consumer Electronics, VPQM 2007, Scottsdale, Arizona, USA, 25-26 January 2007 . 4 p.
Wang, Z., Simoncelli, E. P., Bovik, A. C. Multi-scale structural similarity for image quality assessment. Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers, 2003, pp. 1398–1402.
DOI: https://doi.org/10.32620/aktt.2021.6.09