Estimation of the influence of errors of the SINS constructed on MEMS components on the accuracy of positioning a ultra-light class rocket

Артём Сергеевич Смирнов, Александр Вячеславович Голубек

Abstract


The object of the article is the movement of an ultra-light class liquid-propellant launch vehicle in near-earth space. The subject of the research is the accuracy of launching a spacecraft by a launch vehicle. The article studies the effect of errors in the instruments of a strap-down inertial navigation system built with the use of MEMS sensors on the accuracy of launching a spacecraft into low-earth orbits with an altitude of up to 450 km for two modes of operation: with and without a satellite navigation system. Tasks: to identify the determining disturbing factors, to determine the influence of instrument errors on the trajectory tube, to determine the influence of instrument errors on the insertion accuracy, to perform a comparative analysis of the accuracy characteristics obtained for two modes of operation of the navigation system. Methods used analysis, synthesis, analogy, comparison, factor analysis, statistical modeling, statistical processing of modeling results. Results: a set of defining disturbing factors was revealed, the dependencies of the trajectory tubes on the altitude of the target orbit and flight time were obtained, the dependencies of the limiting deviations of the parameters of the spacecraft's orbit at the time of separation from the launch vehicle on the altitude of the target orbit were obtained. Conclusions. 1. It is shown that the determining perturbing factors are the zero drift of the gyroscope from launch to launch and the zero random drift of the gyroscope. 2. It was determined that the value of the trajectory tube monotonically expands on time and the height of the target orbit. Maximum deviations of the current position and absolute speed in the mode without using a satellite navigation system do not exceed 115 km and 140 m/s. For the mode using a satellite navigation system, these values do not exceed 140 m and 1.5 m/s. 3. It was revealed that the maximum deviations of the parameters of the spacecraft's orbit in the mode with the use of a satellite navigation system do not exceed 27 km in height, 1.8o in inclination, 4.5x10-4 in eccentricity, and 2.7o for the longitude of the ascending node. For the mode with a satellite navigation system - in height - 2.6 km, in inclination and longitude of the ascending node - 0.0003о, in eccentricity - 3.5x10-4. 4. Generally, the use of a satellite navigation system narrows the trajectory tube by twice, and the accuracy increases to four times, depending on the orbital parameters.

Keywords


ultralight launch vehicle; a priori accuracy estimation; factor by factor analysis; error box; orbit parameters deviation

References


Klyushnikov, V. Yu. Rakety-nositeli sverkhlegkogo klassa: nisha na rynke puskovykh uslug i perspektivnye proekty [Ultra-light launch vehicles: a niche in the launch services market and promising projects]. Available at: https://www.vesvks.ru/vks/article/rakety-nositeli-sverhlegkogo-klassa-nisha-na-rynke-16453 (accessed 15.09.2021).

Adamowski, J. UK-Ukrainian launch vehicle developer Skyrora to establish smallsat launch site. Available at: https://spacenews.com/uk-ukrainian-launch-vehicle-developer-skyrora-to-establish-smallsat-launch-site/ (accessed 15.09.2021).

Golubek, A. V., Filippenko, I. M., Tatarevskiy, K. E. Apriornaya otsenka tochnosti vyvedeniya kosmicheskikh apparatov sovremennymi raketami-nositelyami s BINS [A priori estimate of the accuracy of spacecraft launching by modern launch vehicles with SINS]. Dnipro, Lira Publ., 2020. 187 p.

Novykov, O., Tikhonov, V., Litvinov, V. Methods of analysis for launch vehicle injection accuracy, Vilnius, VGTU Press Technika Publ., 2015. 256 p.

Alekseev, Yu. S. Proektirovanie sistem upravleniya obyektov raketno-kosmicheskoy tekhniki [Design of control systems for objects of rocket and space technology]. Kharkov, NPP “Khartron-Arkos” Publ., 2012. 578 p.

Golubek, A. V. Sravnenie metodov otsenki vliyaniya pogreshnostey kompleksa komandnykh pribo-rov na tochnost' vyvedeniya raket-nositeley s terminal'nym navedeniem [Comparison of methods for assessing the influence of errors in a set of command devices on the accuracy of launching launch vehicles with terminal guidance]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2015, vol. 2, pp. 45-51.

Trefilov, P. M., Mamchenko, M. V., Korol’kov, A. V. Strapdown inertial navigation systems readings correction based on navigational data of other sensors and systems with intelligent selection of the priority adjuster. Materials of web-conference Topical Problems of Agriculture, Civil and Environ-mental Engineering, 2020, vol. 224. 9 p. DOI: 10.1051/e3sconf/202022402024.

Chucha, Yu. V., Tikhonov, V. L., Degtyareva, E. A., Sidorenko, S. O., Matvienko, E. V., Lapko, A. N., Lyalyuk, S. N. Otsenka funktsionirovaniya BINS, postroennykh po MEMS tekhnologii, bez i s ispol'zovaniem integratsii s AP SNS [Evaluation of the functioning of SINS, built using MEMS technology, without and with the use of integration with the AP SNS]. Trudy 8 nauch. konf. Kosmicheskie tekhnologii: nastoyashchee i budushchee [Abstract of the 8-th International conference Space technologies: present and future]. Dnipro, 2019, pp. 45.

Liu, J., Zhao, T. In-flight alignment method of navigation system based on microelectromechanical systems sensor measurement. International journal of distributed sensor networks, 2019, vol. 15, no. 4. DOI: 10.1177/1550147719844929.

Jamshaid, A. J., Jiancheng, F. Realization of an autonomous integrated suite of strapdown astro-inertial navigation systems using unscented particle filtering. Computers and mathematics with applications, 2009, vol. 57, pp. 169-183. DOI: 10.1016/j.camwa.2008.07.042.

Liu, J., Zhu, Y., Lai, J., Yu, Y. Inner attitude integration algorithm based on fault detection for strapdown inertial attitude and heading reference system. Chinese journal of aeronautics, 2010, vol. 23, pp. 68-74. DOI: 10.1016/S1000-9361(09)60189-8.

Biswas, S. Computationally efficient non-linear Kalman filters for on-board space vehicle navigation. Ph. D. diss. thesis. Sydney, 2007. 185 p.

Stoica, A.- M., Ene, C., Jakab, I.-B. A discrete-time Kalman filtering method for launch vehicle under parametric modelling uncertainty. Materials of the 9th EASN inter-national conference on “Innovation in aviation & space”. Bucharest, 2019. 8 p. DOI: 10.1051/matecconf/201930407008.

Arsen'ev, V. N., Labetskiy, P. V. Otsenivanie kharakteristik tochnosti sistemy upravleniya rakety-nositelya po rezul'tatam puskov v razlichnykh usloviyakh [Evaluation of the accuracy characteristics of the control system of the launch vehicle based on the results of launches in various conditions]. Izvestiya VUZov. Priborostroenie, 2015, vol. 58, no. 1, pp. 27-32.

Briker, V. V., Litvinov, V. S., Negoda, A. A., Novikov, A. V. Metodologiya i rezul'taty analiza tochnosti vyvedeniya kosmicheskikh apparatov rake-toy-nositelem «Zenit» [Methodology and results of the analysis of the accuracy of spacecraft launching by the Zenit launch vehicle]. Kosmіchna nauka і tekhnologіya, 1996, vol. 2, no. 3-4, pp. 66-69.

Zhang, L.-J. Error analysis of strapdown inertia navigation system in tactical missiles. Advanced in control engineering and information science, 2011, vol. 15, pp. 1456-1460. DOI: 10.1016/j.proeng.2011.08.270.

Zosimovych, N. Modeling the integrated guidance system of a commercial launch vehicle international refereed. Journal of engineering and science (IRJES), 2014, vol. 3, no. 6, pp. 39-54.

Golubek, A. V. A priori analysis of the injection accuracy of a launch vehicle into equatorial orbit. Mіzhvіdomchij naukovo-tekhnіchnij zbіrnik «Adaptivnі sistemi avtomatichnogo upravlіnnya» [Interdepartmental scientific and technical digest “Adaptive systems of automatic control”]. 2020, vol. 2(37), pp. 74-86.

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., Factor, J. K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of geophysical research, 2012, vol. 117, pp. 1-38. DOI: 10.1029/2011JB008916.

GOST 4401-81. Atmosfera standartnaya. Parametry [State Standard 4401-81. Standard atmosphere. Parameters]. Moscow, Standartinform Publ., 1982. 180 p.

NIMA TR 8350.2: Department of Defense World Geodetic System 1984, Available at: https://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf. (accessed 05.12.2020).

Sensonor STIM300 Inertial Measurement Unit, datasheet, Available at: https://www.sensonor.com/products/inertial-measurement-units/stim300/ (accessed 05.12.2020).




DOI: https://doi.org/10.32620/aktt.2021.5.08