Estimation of the influence of errors of the SINS constructed on MEMS components on the accuracy of positioning a ultra-light class rocket
Abstract
Keywords
Full Text:
PDF (Русский)References
Klyushnikov, V. Yu. Rakety-nositeli sverkhlegkogo klassa: nisha na rynke puskovykh uslug i perspektivnye proekty [Ultra-light launch vehicles: a niche in the launch services market and promising projects]. Available at: https://www.vesvks.ru/vks/article/rakety-nositeli-sverhlegkogo-klassa-nisha-na-rynke-16453 (accessed 15.09.2021).
Adamowski, J. UK-Ukrainian launch vehicle developer Skyrora to establish smallsat launch site. Available at: https://spacenews.com/uk-ukrainian-launch-vehicle-developer-skyrora-to-establish-smallsat-launch-site/ (accessed 15.09.2021).
Golubek, A. V., Filippenko, I. M., Tatarevskiy, K. E. Apriornaya otsenka tochnosti vyvedeniya kosmicheskikh apparatov sovremennymi raketami-nositelyami s BINS [A priori estimate of the accuracy of spacecraft launching by modern launch vehicles with SINS]. Dnipro, Lira Publ., 2020. 187 p.
Novykov, O., Tikhonov, V., Litvinov, V. Methods of analysis for launch vehicle injection accuracy, Vilnius, VGTU Press Technika Publ., 2015. 256 p.
Alekseev, Yu. S. Proektirovanie sistem upravleniya obyektov raketno-kosmicheskoy tekhniki [Design of control systems for objects of rocket and space technology]. Kharkov, NPP “Khartron-Arkos” Publ., 2012. 578 p.
Golubek, A. V. Sravnenie metodov otsenki vliyaniya pogreshnostey kompleksa komandnykh pribo-rov na tochnost' vyvedeniya raket-nositeley s terminal'nym navedeniem [Comparison of methods for assessing the influence of errors in a set of command devices on the accuracy of launching launch vehicles with terminal guidance]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2015, vol. 2, pp. 45-51.
Trefilov, P. M., Mamchenko, M. V., Korol’kov, A. V. Strapdown inertial navigation systems readings correction based on navigational data of other sensors and systems with intelligent selection of the priority adjuster. Materials of web-conference Topical Problems of Agriculture, Civil and Environ-mental Engineering, 2020, vol. 224. 9 p. DOI: 10.1051/e3sconf/202022402024.
Chucha, Yu. V., Tikhonov, V. L., Degtyareva, E. A., Sidorenko, S. O., Matvienko, E. V., Lapko, A. N., Lyalyuk, S. N. Otsenka funktsionirovaniya BINS, postroennykh po MEMS tekhnologii, bez i s ispol'zovaniem integratsii s AP SNS [Evaluation of the functioning of SINS, built using MEMS technology, without and with the use of integration with the AP SNS]. Trudy 8 nauch. konf. Kosmicheskie tekhnologii: nastoyashchee i budushchee [Abstract of the 8-th International conference Space technologies: present and future]. Dnipro, 2019, pp. 45.
Liu, J., Zhao, T. In-flight alignment method of navigation system based on microelectromechanical systems sensor measurement. International journal of distributed sensor networks, 2019, vol. 15, no. 4. DOI: 10.1177/1550147719844929.
Jamshaid, A. J., Jiancheng, F. Realization of an autonomous integrated suite of strapdown astro-inertial navigation systems using unscented particle filtering. Computers and mathematics with applications, 2009, vol. 57, pp. 169-183. DOI: 10.1016/j.camwa.2008.07.042.
Liu, J., Zhu, Y., Lai, J., Yu, Y. Inner attitude integration algorithm based on fault detection for strapdown inertial attitude and heading reference system. Chinese journal of aeronautics, 2010, vol. 23, pp. 68-74. DOI: 10.1016/S1000-9361(09)60189-8.
Biswas, S. Computationally efficient non-linear Kalman filters for on-board space vehicle navigation. Ph. D. diss. thesis. Sydney, 2007. 185 p.
Stoica, A.- M., Ene, C., Jakab, I.-B. A discrete-time Kalman filtering method for launch vehicle under parametric modelling uncertainty. Materials of the 9th EASN inter-national conference on “Innovation in aviation & space”. Bucharest, 2019. 8 p. DOI: 10.1051/matecconf/201930407008.
Arsen'ev, V. N., Labetskiy, P. V. Otsenivanie kharakteristik tochnosti sistemy upravleniya rakety-nositelya po rezul'tatam puskov v razlichnykh usloviyakh [Evaluation of the accuracy characteristics of the control system of the launch vehicle based on the results of launches in various conditions]. Izvestiya VUZov. Priborostroenie, 2015, vol. 58, no. 1, pp. 27-32.
Briker, V. V., Litvinov, V. S., Negoda, A. A., Novikov, A. V. Metodologiya i rezul'taty analiza tochnosti vyvedeniya kosmicheskikh apparatov rake-toy-nositelem «Zenit» [Methodology and results of the analysis of the accuracy of spacecraft launching by the Zenit launch vehicle]. Kosmіchna nauka і tekhnologіya, 1996, vol. 2, no. 3-4, pp. 66-69.
Zhang, L.-J. Error analysis of strapdown inertia navigation system in tactical missiles. Advanced in control engineering and information science, 2011, vol. 15, pp. 1456-1460. DOI: 10.1016/j.proeng.2011.08.270.
Zosimovych, N. Modeling the integrated guidance system of a commercial launch vehicle international refereed. Journal of engineering and science (IRJES), 2014, vol. 3, no. 6, pp. 39-54.
Golubek, A. V. A priori analysis of the injection accuracy of a launch vehicle into equatorial orbit. Mіzhvіdomchij naukovo-tekhnіchnij zbіrnik «Adaptivnі sistemi avtomatichnogo upravlіnnya» [Interdepartmental scientific and technical digest “Adaptive systems of automatic control”]. 2020, vol. 2(37), pp. 74-86.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., Factor, J. K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of geophysical research, 2012, vol. 117, pp. 1-38. DOI: 10.1029/2011JB008916.
GOST 4401-81. Atmosfera standartnaya. Parametry [State Standard 4401-81. Standard atmosphere. Parameters]. Moscow, Standartinform Publ., 1982. 180 p.
NIMA TR 8350.2: Department of Defense World Geodetic System 1984, Available at: https://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf. (accessed 05.12.2020).
Sensonor STIM300 Inertial Measurement Unit, datasheet, Available at: https://www.sensonor.com/products/inertial-measurement-units/stim300/ (accessed 05.12.2020).
DOI: https://doi.org/10.32620/aktt.2021.5.08