Modeling the qualitative composition of a fuel-air mixture in a panel igniter of a GTE combustion chamber

Юрій Іванович Торба, Дмитро Вікторович Павленко, Віталій Вікторович Манжос

Abstract


The qualitative composition of the fuel-air mixture, which is formed in the torch igniter of the combustion chamber of the gas turbine engine (GTE), determines the efficiency and reliability of their work. The main task of the study is to determine the qualitative composition of the fuel-air mixture near the electric spark plug of the GTE torch igniter depending on its geometric features and engine operation condition. The composition of the mixture was evaluated using analytical, experimental, and numerical methods. According to the analytical model, a significant over-enrichment of the fuel-air mixture in the igniter housing was established and confirmed experimentally. A numerical model was used to determine the fields of mass concentration of fuel particles in the fuel-air mixture in the torch igniter housing, considering the peculiarities of airflow and fuel supply for different combinations of GTE design features and operating conditions. The influence of geometric parameters of the housing and external factors was investigated using the numerical model of stationary combustion of fuel-air mixture, which was prepared in the torch igniter housing of GTE combustion chamber by evaporation and spraying of aviation kerosene particles in the air stream. The implementation of a small-factor experiment allowed to establish the degree of influence of each factor under study and their interaction on the excess air coefficient. The correlation coefficient between the coefficient of excess air near the spark plug and the average flame temperature is set. Given the absence of serial designs of controller torch ignites, it is proposed to use a pulsed fuel supply to control the quality of the fuel-air mixture. Further ways of research to increase the reliability of ignition of both the torch igniter from the electric spark plug and the combustion chamber of GTE from the flame is outlined.

Keywords


torch igniter; fuel-air mixture; excess air coefficient; model; combustion; ignition

References


Kravchenko, I. F. Obespechenie nadezhnogo zapuska malojemissionnyh kamer sgoranija aviacionnyh GTD [Ensuring reliable start-up of low-emission combustion chambers for aircraft gas turbine engines]. Dis. kand. tehn. nauk: 05.07.05. Nacional'nyj ajerokosmicheskij universitet N.E. Zhukovskogo «Har'kovskij aviacionnyj institut». Kharkov, KHAI Publ., 2006. 208 p.

Torba, Ju. І., Pavlenko, D. V., Dvіrnik, Ja.V. Optimіzacіja konstrukcії fakel'nogo zapal'nika GTD chisel'nim metodom [Optimization of the design of the gas turbine engine flare igniter by the numerical method]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2020, no. 5(165), pp. 83-95. DOI: 10.32620/aktt.2020.5.11.

Vershinin, N. N., Kozlov, G. V., Grigor'ev, Ju. A. Teorija gorenija i vzryva: ucheb, posobie [The theory of combustion and explosion: textbook, manual]. Penza, Izd-vo PGU, 2014. 156 p.

Yevsieiev, S., Kozel, D., Kravchenko, I. Increasing Accuracy of the Gas Temperatures Pattern Calculation for GTE Combustor Using CFD. Integrated Computer Technologies in Mechanical Engineering - 2020. ICTM 2020. Lecture Notes in Networks and Systems, 2021, vol. 188, pp. 440-450. DOI: 10.1007/978-3-030-66717-7_37.

Nguen, T. D., Aleksandrov, Y. B., Sulaiman, A. I., Mingazov, B. G. Experimental and numerical investigation of the mixing ratio for various vane swirlers of the combustion chamber of a gas turbine engine. Russian Aeronautics, 2020, vol. 63, iss. 4, pp. 669-676. DOI: 10.3103/S1068799820040145.

Adarshgouda, G., Ravikumar, B. N. Design and Optimization of Annular Combustion Chamber for Turbine Engine. International Journal of Advanced Research in Science, Communication and Technology, 2021, vol. 8, iss. 1, pp. 344-352.

Serbin, S., Diasamidze, B., Dzida, M. Investigations of the working process in a dual-fuel low-emission combustion chamber for an fpso gas turbine engine. Polish Maritime Research, 2020, vol. 27, iss. 3, pp. 89-99. DOI: 10.2478/pomr-2020-0050.

Inozemcev, A. A., Sandrackij, V. L. Gazoturbinnye dvigateli [Gas turbine engines]. Perm', «Aviadvigatel'» Publ., 2006. 1202 p.

Vladimirov, V. V., Letunovskij, S. F. Vosplamenitel' kamery sgoranija gazoturbinnogo dvigatelja [Combustion chamber igniter of a gas turbine engine]. Patent RF, no. 2083858, 1993.

ANSYS Fluent manual. Chapter 16. Modeling Partially Premixed Combustion. Available at: https://www.afs.enea.it/fluent/Public/Fluent-Doc/PDF/chp16.pdf. (accessed 20.09.2020).

ANSYS Fluent manual. Chapter 19. Discrete Phase Models. Available at: https://www.afs.enea.it/fluent/Public/Fluent-Doc/PDF/chp19.pdf. (accessed 20.09.2020).

ANSYS Fluent manual. Chapter 10. Modeling Turbulence. Available at: https://www.afs.enea.it/fluent/Public/Fluent-Doc/PDF/chp10.pdf. (accessed 20.09.2020).

George, E. P., Box, Stuart J., William, G. Statistics for Experimenters: Design, Innovation, and Discovery, Box Hardcover Publ., 2005. 655 р.

Air-fuel ratio. Available at: https://ru.qwe.wiki/wiki/Air%E2%80%93fuel_ratio. (accessed 20.09.2020).

Torba, Ju. I., Pavlenko, D. V. Zavisimost' kachestva raspyla puskovoj forsunki vosplamenitelja GTD ot perepada davlenija topliva [Dependence of the spray quality of the starting nozzle of the GTE igniter on the fuel pressure drop]. Vestnik dvigatelestroenija, 2019, no. 1, pp. 46–53.

Torba, Ju. I., Pavlenko, D. V., Tkach, D. V. Issledovanie metodov povyshenija jeffektivnosti raboty fakel'nyh vosplamenitelej kamer sgoranija GTD [Investigation of the methods for increasing the efficiency of gas-turbine engine combustion chamber flare igniters]. Tehnologicheskie sistemy, 2020, no. 4, pp. 63-73.

Kravchenko, І. F., Torba, Ju. І., Pavlenko, D. V. et al. Sposіb podachі paliva v zapal'nі pristroї gazoturbіnnih dvigunіv [The method for feeding firing in the ignition annexe of gas turbine engines]. Patent Ukraine, no. 141741, 2020.




DOI: https://doi.org/10.32620/aktt.2021.5.05