Modeling the qualitative composition of a fuel-air mixture in a panel igniter of a GTE combustion chamber
Abstract
Keywords
Full Text:
PDF (Українська)References
Kravchenko, I. F. Obespechenie nadezhnogo zapuska malojemissionnyh kamer sgoranija aviacionnyh GTD [Ensuring reliable start-up of low-emission combustion chambers for aircraft gas turbine engines]. Dis. kand. tehn. nauk: 05.07.05. Nacional'nyj ajerokosmicheskij universitet N.E. Zhukovskogo «Har'kovskij aviacionnyj institut». Kharkov, KHAI Publ., 2006. 208 p.
Torba, Ju. І., Pavlenko, D. V., Dvіrnik, Ja.V. Optimіzacіja konstrukcії fakel'nogo zapal'nika GTD chisel'nim metodom [Optimization of the design of the gas turbine engine flare igniter by the numerical method]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2020, no. 5(165), pp. 83-95. DOI: 10.32620/aktt.2020.5.11.
Vershinin, N. N., Kozlov, G. V., Grigor'ev, Ju. A. Teorija gorenija i vzryva: ucheb, posobie [The theory of combustion and explosion: textbook, manual]. Penza, Izd-vo PGU, 2014. 156 p.
Yevsieiev, S., Kozel, D., Kravchenko, I. Increasing Accuracy of the Gas Temperatures Pattern Calculation for GTE Combustor Using CFD. Integrated Computer Technologies in Mechanical Engineering - 2020. ICTM 2020. Lecture Notes in Networks and Systems, 2021, vol. 188, pp. 440-450. DOI: 10.1007/978-3-030-66717-7_37.
Nguen, T. D., Aleksandrov, Y. B., Sulaiman, A. I., Mingazov, B. G. Experimental and numerical investigation of the mixing ratio for various vane swirlers of the combustion chamber of a gas turbine engine. Russian Aeronautics, 2020, vol. 63, iss. 4, pp. 669-676. DOI: 10.3103/S1068799820040145.
Adarshgouda, G., Ravikumar, B. N. Design and Optimization of Annular Combustion Chamber for Turbine Engine. International Journal of Advanced Research in Science, Communication and Technology, 2021, vol. 8, iss. 1, pp. 344-352.
Serbin, S., Diasamidze, B., Dzida, M. Investigations of the working process in a dual-fuel low-emission combustion chamber for an fpso gas turbine engine. Polish Maritime Research, 2020, vol. 27, iss. 3, pp. 89-99. DOI: 10.2478/pomr-2020-0050.
Inozemcev, A. A., Sandrackij, V. L. Gazoturbinnye dvigateli [Gas turbine engines]. Perm', «Aviadvigatel'» Publ., 2006. 1202 p.
Vladimirov, V. V., Letunovskij, S. F. Vosplamenitel' kamery sgoranija gazoturbinnogo dvigatelja [Combustion chamber igniter of a gas turbine engine]. Patent RF, no. 2083858, 1993.
ANSYS Fluent manual. Chapter 16. Modeling Partially Premixed Combustion. Available at: https://www.afs.enea.it/fluent/Public/Fluent-Doc/PDF/chp16.pdf. (accessed 20.09.2020).
ANSYS Fluent manual. Chapter 19. Discrete Phase Models. Available at: https://www.afs.enea.it/fluent/Public/Fluent-Doc/PDF/chp19.pdf. (accessed 20.09.2020).
ANSYS Fluent manual. Chapter 10. Modeling Turbulence. Available at: https://www.afs.enea.it/fluent/Public/Fluent-Doc/PDF/chp10.pdf. (accessed 20.09.2020).
George, E. P., Box, Stuart J., William, G. Statistics for Experimenters: Design, Innovation, and Discovery, Box Hardcover Publ., 2005. 655 р.
Air-fuel ratio. Available at: https://ru.qwe.wiki/wiki/Air%E2%80%93fuel_ratio. (accessed 20.09.2020).
Torba, Ju. I., Pavlenko, D. V. Zavisimost' kachestva raspyla puskovoj forsunki vosplamenitelja GTD ot perepada davlenija topliva [Dependence of the spray quality of the starting nozzle of the GTE igniter on the fuel pressure drop]. Vestnik dvigatelestroenija, 2019, no. 1, pp. 46–53.
Torba, Ju. I., Pavlenko, D. V., Tkach, D. V. Issledovanie metodov povyshenija jeffektivnosti raboty fakel'nyh vosplamenitelej kamer sgoranija GTD [Investigation of the methods for increasing the efficiency of gas-turbine engine combustion chamber flare igniters]. Tehnologicheskie sistemy, 2020, no. 4, pp. 63-73.
Kravchenko, І. F., Torba, Ju. І., Pavlenko, D. V. et al. Sposіb podachі paliva v zapal'nі pristroї gazoturbіnnih dvigunіv [The method for feeding firing in the ignition annexe of gas turbine engines]. Patent Ukraine, no. 141741, 2020.
DOI: https://doi.org/10.32620/aktt.2021.5.05