Methods for defect detection in aviation engine parts made of composite materials

Володимир Олександрович Пальчиковський, Андрій Володимирович Морозов, Юрій Іванович Торба

Abstract


The key priority in improving the technical and economic performance of gas turbine engines lays in the use of new composite materials. The use of composites in the components of critical load-carrying structures operating under static and dynamic loads during long service lives determines the need to predict the component lives. Also, in order to increase the safety of engine operation and improve the parts manufacturing process, timely defect detection in such structures is of great importance. This article is devoted to the detection of the composite parts defects and damages that occur at different stages of manufacturing and operation. The aim is to investigate the existing methods of non-destructive testing of composite materials, describe their functional concept, and determine the field of their application. The article considers acoustic, thermal, optical, and radiation testing methods. Among the acoustic methods, the phased array method is selected as the most informative and multipurpose. The acoustic emission method is also selected; it will allow real-time monitoring of defect growth during testing. Out of thermal methods, the vibrothermography method was selected as the most advanced among the thermographic sub-methods. It allows using the phenomenon of local defect resonance and thus ensures effective defect detection. Shearography is selected for investigation out of optical methods. The special aspects of the use of X-ray methods are considered through the example of X-ray computed tomography. It is concluded that the approach combining several methods can significantly increase the efficiency of defect detecting and help to assess their criticality. Active thermal testing is well suited for fast scanning of large-sized parts and searching for areas of defect accumulation. In the following, local methods, such as impedance, vibrothermography, or one of the ultrasonic, should be used. To measure deformations under static load, it is a good practice to use shearography. To identify progressive defects under static load, it makes sense to use the acoustic emission method.

Keywords


non-destructive testing of composite materials; local method of free vibrations; local method of free oscillation testing; impedance method, phased array; acoustic emission; active thermal testing; vibrothermography; shearography; X-ray computed tomograph

References


Novikov, A. S., Karimbaev, T. D., Luppov, A. A., Afanas'ev, D. V., Mezentsev, M. A. Innovatsii pri primenenii kompozitsionnykh materialov v aviatsionnykh dvigatelyakh [Innovations in the use of composite materials in aircraft engines]. Dvigatel', 2015, no. 2(98), pp. 6–9.

Baranova, O. S. Defektoskopiya kompozytnykh materialiv z zastosuvannyam udarno-akustychnoho metodu neruynivnoho kontrolyu [Defectoscopy of composite materials using the shock-acoustic method of non-jet control]. Visnyk KNUTD, 2015, no. 6(92), pp. 150-155.

Murashov, V. V., Kosarina, E. I., Generalov, A. S. Kontrol' kachestva aviatsionnykh detalei iz polimernykh kompozitsionnykh materialov i mnogosloinykh kleenykh konstruktsii [Quality control of aircraft parts made of polymer composite materials and multilayer glued structures] Aviatsionnye materialy i tekhnologii, 2013, no. 3, pp. 65–70.

Chertishchev, V. Yu. Razrabotka tekhnologii i sredstv akusticheskogo impedansnogo kontrolya mnogosloinykh sotovykh konstruktsii iz polimernykh kompozitsionnykh materialov. Diss. kand. tekhn. nauk [Development of technologies and means of acoustic impedance control of multilayer honeycomb structures from polymer composite materials. PhD Diss.]. Moscow, 2020. 178 p.

Murashov, V. V. Generalov, A. S. Kontrol' mnogosloinykh kleenykh konstruktsii nizkochastotnymi akusticheskimi metodami [Control of multilayer glued structures by low-frequency acoustic methods]. Aviatsionnye materialy i tekhnologii, 2014, no. 2, pp. 59–66.

Olympus Corporation. Available at: http://www.olympus-ims.com/ (accessed 16.03.2021).

Karimbaev, T. D., Pal'chikov, D. S. Metody nerazrushayushchego kontrolya detalei aviadvigatelei iz kompozitsionnykh materialov. vyyavlenie granits dopustimosti defektov [Methods of non-destructive testing of aircraft engine parts made of composite materials. identification of the boundaries of admissibility of defects]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2014, no. 5(47), pp. 96–105.

Nedoseka, S. A., Nedoseka, A. Ya., Shevtsova, M. A., Gur'yanov, A. N., Vambol', A. A. Akusticheskaya emissiya pri ispytanii kompozitnykh materialov [Acoustic emission when testing composite materials]. Tekhn. diagnostika i nerazrush. kontrol', 2018, no. 4, pp. 36–40.

AT – Automation Technology GmbH. Available at: https://www.automationtechnology.de (accessed 16.03.2021).

Gordienko, E. Yu., Glushchuk, N. I., Fomenko, Yu. V., Shustakova, G. V., Dzeshul'skaya, I. I., Ivan'ko, Yu. F. Diagnostika kompozitnykh materialov elementov samoletov metodom aktivnoi termografii [Diagnostics of composite materials of aircraft elements by active thermography]. Nauka innov., 2018, no. 14(2), pp. 39 – 50.

Derusova, D. A. Teplovoi vibrotermograficheskii kontrol' kompozitov s ispol'zovaniem rezonansnoi ul'trazvukovoi i opticheskoi stimulyatsii. Diss. kand. tekhn. nauk [Thermal vibrothermographic control of composites using resonant ultrasonic and optical stimulation. PhD Diss.]. Tomsk, 2016. 152 p.

Bobko, Yu. A., Sinchugov, I. S. Primenenie metoda sherografii dlya defektoskopii izdelii iz kompozitsionnykh materialov [Application of the method of sherography for flaw detection of products made of composite materials]. V mire NK, 2016, vol. 19, no. 4, pp. 4–7.

Larin, A. A. Sposoby otsenki rabotosposobnosti izdelii iz kompozitsionnykh materialov metodom komp'yuternoi tomografii. Diss. kand. tekhn. nauk [Methods for assessing the performance of products made of composite materials by the method of computed tomography. PhD Diss.]. Moscow, 2013. 148 p.




DOI: https://doi.org/10.32620/aktt.2021.4sup1.14