Experimental and calculation determination of the mechanical properties of the material of GTE blades
Abstract
Keywords
Full Text:
PDF (Русский)References
Carlsson, L. A., Pipes, R. B. Experimental characterization of advanced composite materials. Technomic Publishing Company Inc., 1997. 256 p.
Klyuev, V. V. Nerazrushayuschiy kontrol. Tom 7. [Non-destructive testing. Volume 7]. Methods of acoustic emission. Book 1, Vibration diagnostics. Book 2, Moscow, Mechanical engineering Publ., 2005. 829 p.
Filatov, M. A., Sudakov, V. S. Vlijanie termicheskoj obrabotki na strukturu i svojstva zharoprochnyh nikelevyh splavov [Effect of heat treatment on the structure and properties of heat-resistant nickel alloys]. MiTOM, 1995, no. 6, pp. 12-15.
Ganesan, A. R. Measurement of poisson's ratio using real-time digital speckle pattern interferometry, Optics and Lasers in Engineering, 1989, vol. 11, iss. 4, pp. 265-269, DOI: 10.1016/0143-8166(89)90064-X.
Krevchik, V. D., Rudin, A. V., Kochkin, S. V. Opredelenie modulja Junga tonkih plastin i sterzhnej s pomoshh'ju kolebatel'noj sistemy s prisoedinennoj massoj [Determination of Young's modulus of thin plates and rods using an oscillatory system with added mass]. Proceedings of higher educational institutions. Volga region. Technical science, 2013, no. 2 (26), pp. 110-119.
Formato, A., Ianniello, D., Pellegrino, A., Villecco, F. Vibration-Based Experimental Identification of the Elastic Moduli Using Plate Specimens of the Olive Tree. Machines, 2019, no. 7, iss. 2, Article Id: 46. DOI: 10.3390/machines7020046.
Gecov, L. B. Materialy i prochnost' detalej gazovyh turbin [Materials and strength of gas turbine parts]. Gas turbine technologies, Book 1, Rybinsk, 2010. 611 p.
Berdnik, O. B., Careva, I. N., Chegurov, M. K. Zhivuchest' materiala lopatok turbin pri dlitel'nyh srokah jekspluatacii [The survivability of the material of turbine blades during long service life]. Materials management issues, 2019, no. 1(97), pp. 28-35. DOI: 10.22349/1994-6716-2019-97-1-28-35.
Vest. Ch. Golograficheskaja interferometrija [Holographic interferometry]. Moscow, Mir publ., 1982. 504 p.
Jones, R., Wykes, C. Holographic and Speckle Interferometry. Cambridge University Press Publ., 1989. 386 p.
Zhuzhukin, A. I., Soljannikov, V. A. Metod umen'shenija chuvstvitel'nosti spekl-interferometra pri issledovanii vibracij detalej turbomashin [Method of reducing the sensitivity of a speckle interferometer in the study of vibrations of parts of turbomachines]. Bulletin of the Samara State Aerospace University, 2014, no. 1(43), pp. 194-200. DOI: 10.18287/1998-6629-2014-0-1(43)-194-200.
Elenevskij, D. S., Shaposhnikov, Ju. N. Lazerno-komp'juternaja sistema analiza spekl-interferogramm vibrirujushhih obektov [Laser-computer system for analyzing speckle interferograms of vibrating objects]. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 1999, no. 1, рр. 134-136.
Zhuzhukin, A. I. Mobil'nyj spekl-interferometr dlja issledovanija form kolebanij vibrirujushhih obektov vo vne stendovyh uslovijah [Mobile speckle interferometer for studying vibration modes of vibrating objects outside the bench conditions]. Electronic journal «Trudy MAI», 2011, no. 48, pp. 37-41.
Elenevskij, D. S., Shaposhnikov, Ju. N. Issledovanie processov zvukoizluchenija konstrukcii metodami jelektronnoj spekl-interferometrii [Investigation of the processes of sound emission of a structure by the methods of electronic speckle interferometry]. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 2001. 232 p.
Komarov, Ju. S. Pomehoustojchivyj cifrovoj spekl-interferometr dlja vibrometrii obektov na osnove metoda usrednenija po vremeni. Diss. k. t. n. [Noise-resistant digital speckl-interferometer for vibrometry of objects on the basis of the method of averaging in time PhD diss.]. Samara, 2004. 234 p.
Tkach, M. et al. Improving the Noise Immunity of the Measuring and Computing Coherent-Optical Vibrodi-agnostic Complex. In: Integrated Computer Technologies in Mechanical Engineering - 2020. ICTM 2020. Lecture Notes in Networks and Systems, 2021, vol. 188, pp. 277-289. Springer, Cham. DOI: 10.1007/978-3-030-66717-7_23.
Tkach, M. R., Zolotiy, Yu. G., Dovgan, D. V., Guk, I. Yu. Sposib vy`znachennya chastot i form rezonansny`x koly`van` lopatok GTD metodom spekl-interferometriyi [Method of determining of forms of resonant vibrations shapes of blades of gas turbine engine by speckle interferogram]. Patent UA, № 103068. 2015.
Tkach, M., Morhun, S., Zolotoy, Y., Zhuk, I. Modal analysis of the axial compressor blade: advanced time-dependent electronic interferometry and finite element method. Int. J. Turbo Jet-Eng, 2020, Published ahead of print. DOI: 10.1515/tjj-2020-0014.
Pridorozhnyj, R. P., Sheremet'ev, A. V., Zin'kovskij, A. P. Vliyanie polzuchesti materiala na rabotosposobnost' lopatok soplovogo apparata turbiny vysokogo davleniya [Influence of material creep on the performance of high-pressure turbine nozzle blades]. Aerospace technic and technology, 2020, no. 7(167), pp. 41-46. DOI: 10.32620/aktt.2020.7.06.
Vorobiev, YU. S., Chugaj, M. A., Romanenko, V. N., Kulishov, S. B., Skrickij, A. N. Analiz kolebanij lopatochnogo apparata GTD s monokristallicheskimi lopatkami [Analysis of Vibrations of a GTE Blade with Monocrystalline Blades]. Aerospace technic and technology, 2011, no. 8(85), pp. 47-50.
Mordasov, D. M. Tehnicheskie izmerenija plotnosti [Technical measurements of density]. Tambov, Publishing house of TSTU, 2004. 80 p.
DOI: https://doi.org/10.32620/aktt.2021.4sup1.12