Experimental and calculation determination of the mechanical properties of the material of GTE blades

Михаил Романович Ткач, Сергей Борисович Кулишов, Виталий Анатольевич Полищук, Владимир Сергеевич Ключник, Юрий Григорьевич Золотой, Ирина Юрьевна Жук, Аркадий Юрьевич Проскурин, Юрий Николаевич Галынкин

Abstract


A schematic description of a stand based on a digital speckle interferometer with a diffuse reference wave is given, which makes it possible to determine the natural frequencies and vibration modes of the blades in real-time. In the frequency range of 100 ... 3000 Hz, an experimental study of the vibration characteristics of a turbine rotor blade of a gas turbine engine was carried out, under free boundary conditions, which were achieved by placing the blade on soft silicone racks. Blade dimensions: height along the trailing edge - 288 mm, a chord in the middle section - 88.5 mm. 7 modes of vibrations have been identified. The technology of creating a solid-state geometric model of a rotor blade based on a faceted body obtained by 3D scanning with an accuracy of 0.01 mm is presented. The finite element method, using the Lagrange variation principle, is used to calculate the values of natural frequencies and vibration modes of a blade based on the developed geometric model. Concerning the frequency range 100 ... 3000 Hz, using the Ansys Workbench software package, a series of calculations of the resonant frequencies of the blade, by the finite element method, in the range of variation of the values of mechanical properties was carried out: Young's modulus E = 200 ... 230 GPa; Poisson's ratio μ = 0.26 ... 0.3. The density of the material: ρ = 7830 kg / m³, determined experimentally, by the method of hydrostatic weighing. The final element used in the calculation is (tetrahedron) SOLID 187; the minimum element size is 0.6 mm. The total number of elements is about 1.5 ∙ 10⁶. Based on the two-dimensional spline interpolation of the calculated data, the dependence of the standard deviation of the calculated and experimental values on the adopted mechanical properties of the material of the rotor blade is built. In the range of values E = 215 ... 217 GPa and μ = 0.295 ... 0.3, the minimum standard deviation of the calculated frequencies from their experimental values is 0.73%. Provided the value of the standard deviation of frequencies is 1%, the range of values of mechanical properties will be: E = 211 ... 220 GPa and μ = 0.26 ... 0.3. It is shown that narrowing the studied range of values of Young's modulus and Poisson's ratio does not significantly affect the results obtained.

Keywords


speckle interferometry; free vibrations; GTE blades; finite element method; resonant frequencies

References


Carlsson, L. A., Pipes, R. B. Experimental characterization of advanced composite materials. Technomic Publishing Company Inc., 1997. 256 p.

Klyuev, V. V. Nerazrushayuschiy kontrol. Tom 7. [Non-destructive testing. Volume 7]. Methods of acoustic emission. Book 1, Vibration diagnostics. Book 2, Moscow, Mechanical engineering Publ., 2005. 829 p.

Filatov, M. A., Sudakov, V. S. Vlijanie termicheskoj obrabotki na strukturu i svojstva zharoprochnyh nikelevyh splavov [Effect of heat treatment on the structure and properties of heat-resistant nickel alloys]. MiTOM, 1995, no. 6, pp. 12-15.

Ganesan, A. R. Measurement of poisson's ratio using real-time digital speckle pattern interferometry, Optics and Lasers in Engineering, 1989, vol. 11, iss. 4, pp. 265-269, DOI: 10.1016/0143-8166(89)90064-X.

Krevchik, V. D., Rudin, A. V., Kochkin, S. V. Opredelenie modulja Junga tonkih plastin i sterzhnej s pomoshh'ju kolebatel'noj sistemy s prisoedinennoj massoj [Determination of Young's modulus of thin plates and rods using an oscillatory system with added mass]. Proceedings of higher educational institutions. Volga region. Technical science, 2013, no. 2 (26), pp. 110-119.

Formato, A., Ianniello, D., Pellegrino, A., Villecco, F. Vibration-Based Experimental Identification of the Elastic Moduli Using Plate Specimens of the Olive Tree. Machines, 2019, no. 7, iss. 2, Article Id: 46. DOI: 10.3390/machines7020046.

Gecov, L. B. Materialy i prochnost' detalej gazovyh turbin [Materials and strength of gas turbine parts]. Gas turbine technologies, Book 1, Rybinsk, 2010. 611 p.

Berdnik, O. B., Careva, I. N., Chegurov, M. K. Zhivuchest' materiala lopatok turbin pri dlitel'nyh srokah jekspluatacii [The survivability of the material of turbine blades during long service life]. Materials management issues, 2019, no. 1(97), pp. 28-35. DOI: 10.22349/1994-6716-2019-97-1-28-35.

Vest. Ch. Golograficheskaja interferometrija [Holographic interferometry]. Moscow, Mir publ., 1982. 504 p.

Jones, R., Wykes, C. Holographic and Speckle Interferometry. Cambridge University Press Publ., 1989. 386 p.

Zhuzhukin, A. I., Soljannikov, V. A. Metod umen'shenija chuvstvitel'nosti spekl-interferometra pri issledovanii vibracij detalej turbomashin [Method of reducing the sensitivity of a speckle interferometer in the study of vibrations of parts of turbomachines]. Bulletin of the Samara State Aerospace University, 2014, no. 1(43), pp. 194-200. DOI: 10.18287/1998-6629-2014-0-1(43)-194-200.

Elenevskij, D. S., Shaposhnikov, Ju. N. Lazerno-komp'juternaja sistema analiza spekl-interferogramm vibrirujushhih obektov [Laser-computer system for analyzing speckle interferograms of vibrating objects]. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 1999, no. 1, рр. 134-136.

Zhuzhukin, A. I. Mobil'nyj spekl-interferometr dlja issledovanija form kolebanij vibrirujushhih obektov vo vne stendovyh uslovijah [Mobile speckle interferometer for studying vibration modes of vibrating objects outside the bench conditions]. Electronic journal «Trudy MAI», 2011, no. 48, pp. 37-41.

Elenevskij, D. S., Shaposhnikov, Ju. N. Issledovanie processov zvukoizluchenija konstrukcii metodami jelektronnoj spekl-interferometrii [Investigation of the processes of sound emission of a structure by the methods of electronic speckle interferometry]. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 2001. 232 p.

Komarov, Ju. S. Pomehoustojchivyj cifrovoj spekl-interferometr dlja vibrometrii obektov na osnove metoda usrednenija po vremeni. Diss. k. t. n. [Noise-resistant digital speckl-interferometer for vibrometry of objects on the basis of the method of averaging in time PhD diss.]. Samara, 2004. 234 p.

Tkach, M. et al. Improving the Noise Immunity of the Measuring and Computing Coherent-Optical Vibrodi-agnostic Complex. In: Integrated Computer Technologies in Mechanical Engineering - 2020. ICTM 2020. Lecture Notes in Networks and Systems, 2021, vol. 188, pp. 277-289. Springer, Cham. DOI: 10.1007/978-3-030-66717-7_23.

Tkach, M. R., Zolotiy, Yu. G., Dovgan, D. V., Guk, I. Yu. Sposib vy`znachennya chastot i form rezonansny`x koly`van` lopatok GTD metodom spekl-interferometriyi [Method of determining of forms of resonant vibrations shapes of blades of gas turbine engine by speckle interferogram]. Patent UA, № 103068. 2015.

Tkach, M., Morhun, S., Zolotoy, Y., Zhuk, I. Modal analysis of the axial compressor blade: advanced time-dependent electronic interferometry and finite element method. Int. J. Turbo Jet-Eng, 2020, Published ahead of print. DOI: 10.1515/tjj-2020-0014.

Pridorozhnyj, R. P., Sheremet'ev, A. V., Zin'kovskij, A. P. Vliyanie polzuchesti materiala na rabotosposobnost' lopatok soplovogo apparata turbiny vysokogo davleniya [Influence of material creep on the performance of high-pressure turbine nozzle blades]. Aerospace technic and technology, 2020, no. 7(167), pp. 41-46. DOI: 10.32620/aktt.2020.7.06.

Vorobiev, YU. S., Chugaj, M. A., Romanenko, V. N., Kulishov, S. B., Skrickij, A. N. Analiz kolebanij lopatochnogo apparata GTD s monokristallicheskimi lopatkami [Analysis of Vibrations of a GTE Blade with Monocrystalline Blades]. Aerospace technic and technology, 2011, no. 8(85), pp. 47-50.

Mordasov, D. M. Tehnicheskie izmerenija plotnosti [Technical measurements of density]. Tambov, Publishing house of TSTU, 2004. 80 p.




DOI: https://doi.org/10.32620/aktt.2021.4sup1.12