Numerical and experimental study of filling a vessel with a component of gas mixture

Ольга Володимирівна Шипуль, Сергій Олександрович Заклінський, Володимир Вікторович Комбаров, Олексій Анатолійович Павленко, Вадим Олегович Гарін

Abstract


The subject of the research is mathematical models of a gas-dynamic non-stationary process of filling a vessel with a component of a gas mixture. The aim of the study is the scientific and experimental substantiation of the choice of a model of filling a vessel with a component of a gas mixture with a given accuracy. The objectives of the study are to conduct full-scale experiments on filling the vessel with gas for further verification of the gas mixture generation control system, as well as in the development of adequate mathematical models of gas-dynamic flow, the analysis of simulation results, and the use of verified results in the system of automated generation of a gas mixture of a given accuracy by assessing the mass of its components depending on the filling parameters. The tasks are solved by studying the results of numerical modeling of the process and full-scale experiments. The following results are obtained. A series of full-scale experiments on filling a vessel with high-frequency monitoring of the pressure and temperature of the gas being filled was carried out. Significant factors were analyzed. The use of SAS SST turbulence models was substantiated. Models of the gas-dynamic unsteady process of filling the vessel with a component of the gas mixture for various values of the mass flow rate had been built. All the simulations were carried out using the ANSYS CFX software package. The influence of considering a heat exchange with the vessel walls on the studied parameters of the mixture is determined, namely: pressure, gas temperature averaged over the volume, gas temperature in a control point, mass of the component of a gas mixture. It was found that the deviation of the calculated data when using a model with an adiabatic condition on the wall compared to a model with a constant temperature regime is: for pressure – no more than 5 %, for averaged temperature – 6 %, for the temperature at the monitor point – 9 %, for mass – 1.5 %. The discrepancy between the simulation results and the full-scale experiment does not exceed 12 % in pressure and temperature at the monitor point, as well as 4 % in the mass of the component. By the experimentally determined accuracy parameter of the gas mixture (the mass of the mixture component in particular), the numerical models had been corrected to provide the mass value error of no more than 0.5 %.

Keywords


the mathematical model of a gas-dynamic process; vessel filling parameters; numerical modeling; dosing accuracy; the components of the gas mixture

References


Xu, L. D., Xu, E. L., Li, L. Industry 4.0: state of the art and future trends. International Journal of Production Research, 2018, vol. 56, iss. 8, pp. 2941-2962. DOI: 10.1080/00207543.2018.1444806.

Mubarak, M. F., Petraite, M. Industry 4.0 technologies, digital trust and technological orientation: What matters in open innovation? Technological Forecasting and Social Change, 2020, vol. 161, Article 120332. DOI: 10.1016/j.techfore.2020.120332.

Plankovskyy, S., Popov, V., Shypul, O., Tsegelnyk, Ye., Tryfonov, O., Brega, D. Advanced thermal energy method for finishing precision parts : book. Advanced Machining and Finishing Handbooks in Advanced Manufacturing 2021, Chapter 15, pp. 527-575. ISBN 978-0-12-817452-4 DOI: 10.1016/C2018-0-00908-1.

Plankovskii, S. I., Shipul', O. V., Zaklinskii, S. A. Perspektivy primeneniya sovremennykh metodov generatsii gazovykh smesei dlya pretsizionnoi termoimpul'snoi obrabotki [Application perspectives of modern methods for gas mixtures generating to precision thermal pulse treatment]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2017, vol. 3 (138), pp. 85-93.

Plankovskii, S. I., Shipul', O. V., Trifonov, O. V., Zaklinskii, S. A. Algoritm upravleniya sistemoi generatsii smesi dlya pretsizionnoi termoimpul'snoi obrabotki [Algorithm of mixture generation control system for precision thermal pulse treatment]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2018, vol. 5 (149), pp. 58–66. DOI: 10.32620/aktt.2018.5.09.

Plankovskyy, S. I., Shypul, O. V., Zaklinskyy, S. A., Tryfonov, O. V. Dynamic method of gas mixtures creation for plasma technologies. Problems of Atomic Science and Technology, 2018, vol. 6(188), pp. 189–193.

Bourgeois, T., Ammouri, F., Weber, M., Knapik, C. Evaluating the temperature inside a tank during a filling with highly-pressurized gas. International Journal of Hydrogen Energy, 2015, vol. 40, iss. 35, pp. 11748-11755. DOI: 10.1016/j.ijhydene.2015.01.096

Elgin III, R. C., Hagen, C. L. A semiempirical compressed-naturalgas tank-filling model created for a novel self-refueling vehicle system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, vol. 230, iss. 12, pp. 1719-1726. DOI: 10.1177/0954407015623409.

Striednig, M., Brandstatter, S., Sartory, M., Klell, M. Thermodynamic real gas analysis of a tank filling process. International Journal of Hydrogen Energy, 2014, vol. 39, iss. 16, pp. 8495-8509. DOI: 10.1016/j.ijhydene.2014.03.028.

Li, J., Myoung, N., Kwon, J., Jang, S., Lee, T. Study on the Prediction of the Temperature and Mass of Hydrogen Gas inside a Tank during Fast Filling Process. Energies, 2020, vol. 13, iss. 23, Article 6428. DOI: 10.3390/en13236428.

Bourgeois, T., Ammouri, F., Baraldi, D., Moretto, P. The temperature evolution in compressed gas filling processes: A review. International Journal of Hydrogen Energy, 2018, vol. 43, iss. 4, pp. 2268-2292. DOI: 10.1016/j.ijhydene.2017.11.068.

Heitsch, M., Baraldi, D., Moretto, P. Numerical investigations on the fast filling of hydrogen tanks. International Journal of Hydrogen Energy, 2011, vol. 36, iss. 3, pp. 2606-2612. DOI: 10.1016/j.ijhydene.2010.04.134.

Suryan, A., Kim, Heuy Dong., Setoguchi, T. Three dimensional numerical computations on the fast filling of a hydrogen tank under different conditions. International Journal of Hydrogen Energy, 2012, vol. 37, iss. 9, pp. 7600-7611. DOI: 10.1016/j.ijhydene.2012.02.019.

Liu, J., Zheng, S., Zhang, Z., Zheng, J., Zhao, Y. Numerical study on the fast filling of on-bus gaseous hydrogen storage cylinder. International Journal of Hydrogen Energy, 2020, vol. 45, iss. 15, pp. 9241-9251. DOI: 10.1016/j.ijhydene.2020.01.033.

Plankovs'kij S. І., Shipul'O. V. at al. Rozroblennya avtomatizovanogo kompleksu dlya precizіjnogo termoіmpul'snogo obroblennya detonuval'nimi gazovimi sumіshami: naukovі materіali : monografіya [Development of an automated complex for precision thermopulse treatment with detonating gas mixtures: scientific materials: monograph]. Kharkiv, Nac. aerokosm. un-t іm. M. Є. Zhukovs'kogo «Harkіv. avіac. іn-t» Publ., 2020. 318 p.

Sysoev, Yu. A., Rudenko, V. P., Dolomanov, A. V. Sozdanije smesey gazov dlja iono-plazmenih tehnologiy [Creating a mixture of gases for ion-plasma technologies]. Vostochno-Evropejskiy jurnal peredovih tehnologiy – Eastern European Journal of Advanced Technologies, 2014, vol. 2, no. 5(68), pp. 15-19. DOI: 10.15587/1729-4061.2014.21873.

ANSYS CFX Reference Guide. Available at: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/prod_page.html?pn=CFX&pid=CFX〈=en. (accessed 12.05.2021).

Menter, F. R. Two-equаtion eddy-viscosity turbulence models for engineering аpplicаtions. АIАА, 1994, vol. 32, no. 8, pp. 269-289. DOI: 10.2514/3.12149.

Menter, F. R., Kuntz, M., Bender, R. А scаle-аdаptive simulаtion model for turbulent flow predic-tions. АIАА, 2003, Pаper 2003-0767. 40 p. DOI: 10.2514/6.2003-767.




DOI: https://doi.org/10.32620/aktt.2021.4.09