Election of optimal methods for cleaning blades of closed monowheels of turbopump units obtained by the additive method of direct laser powder sintering

Юрій Анатолійович Шашко, Олексій Володимирович Кулик, Роман Федосійович Максимчук, Анатолій Федорович Санін

Abstract


The creation of complex structural elements of aircraft using is promising and is widely used since such elements have several structural and technological advantages over the manufacture of parts using classical technologies. However, it requires the solution of several scientific and technical problems to obtain products of high accuracy and roughness, the development of a technological process, the development of processing modes, and sometimes the development of a new design of products. For the development of technologies in modern rocketry, improving the quality and accuracy of the production of turbines of turbopump units, an important task is to search for new and improve existing technological solutions for the manufacture of such parts with high surface quality. The work aimed to analyze the existing processing methods for parts of turbopump units with complex geometry and select the most technologically advanced one for further use in technological processes. The objective of this article is an analytical review of existing methods of surface treatment of critical parts and the selection of the most technologically advanced method for finishing the blades of a closed-type turbine (with a shroud) to reduce the roughness and improve the quality of the working surface. The object of the research is the process of machining a segment of a turbine impeller made of Inconel 718 nickel alloy (domestic analog – alloy HN45MVTJuBR), which is a key element of a turbopump unit. The blank part of the turbine monowheel type was made using 3D printing technology. As a result of the work, the optimal processing method was chosen, namely, the DryLyte dry electrochemical polishing technology, which has quite significant advantages in comparison with illogical methods. This method has been tested experimentally and is being actively implemented abroad. To introduce this DryLyte technology, it is necessary to carry out additional experiments on finishing the inner channels of small size (24 mm) using the example of interscapular channels of turbines, which will make it possible to fully assess the capabilities of the technology.

Keywords


manufacturability; turbopump unit; monowheel; additive technologies; SLM; quality; roughness; blades

References


Tikhonov, N. T., Musatkin, N. F., Matveev, V. N. Teoriya lopatochnykh mashin aviatsionnykh gazoturbinnykh dvigatelei [The theory of blade machines for aircraft gas turbine engines]. Samara, Samarskii gosudarstvennyi aerokosmicheskii universitet Pub., 2001. 155 p.

Morgunov, Yu. A., Saushkin, B. P. Additivnye tekhnologii dlya aviakosmicheskoi tekhniki [Additive technologies for aerospace engineering]. Additivnye tekhnologii – Additive technologies, 2016, vol. 1, no. 1, pp. 30-38.

Adzhamskii, S. V., Kononenko, A. A., Podol'skii, R. V. Perspektivy primeneniya additivnykh tekhnologii v avia- i raketostroenii [Prospects for the application of additive technologies in aircraft and rocket engineering]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2020, no. 7(167), pp. 59-65. DOI: 10.32620/aktt.2020.7.09.

Kaynak, Y., Tascioglu, E. Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing. Progress Additive Manufacturing, 2020, vol. 5, pp. 221-234. DOI: 10.1007/s40964-019-00099-1.

Rudawska, Anna. Surface Treatment in Bonding Technology. Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland, 2019. 284 p. DOI: 10.1016/C2018-0-01281-5.

Andreas, W. Hydroblasting and Coating of Steel Structures. Elsevier Science, 2003. 205 p. DOI: 10.1016/B978-1-85617-395-7.X5000-8.

Liu, X., Kang, X., Zhao, W., Liang, W. Electrode feeding path searching for 5-axis EDM of integral shrouded blisks. Procedia CIRP, 2013, Iss. 6, pp. 107-111.

Gorelov, V. A., Arshinov, S. V., Maksimov, Yu. V., Pini, B. E., Bekaev, A. A., Merzlikin, V. G., Vtorova, A. Yu. K voprosu vybora tekhnologii obrabotki slozhnoprofil'nykh izdelii (na primere lopatok monokoles gazoturbinnykh dvigatelei) [On the issue of choosing a technology for processing complex-profile products (for example, blades of mono-wheels of gas turbine engines)]. Izvestiya Mosk. gosud. tekhn. un-ta MAMI Publ., 2012, vol. 2, no. 2 (14), pp. 67-73.

Klocke, F., Holstena, M., Welling, D., Klink, A., Perez, R. Influence of Threshold Based Process Control on Sinking EDM of a High Aspect Ratio Geometry in a Gamma Titanium Aluminide. Procedia CIRP, 2015, Iss. 35, pp. 73-78. DOI: 10.1016/j.procir.2013.03.041.

Nozhnitskii, Yu. A., Fishgoit, A. V., Tkachenko, R. I., Teplova, S. V. Razrabotka i primenenie novykh metodov uprochneniya detalei GTD, osnovannykh na plasticheskom deformirovanii poverkhnostnykh sloev [Development and application of new methods of hardening of GTE parts based on plastic deformation of surface layers]. Vestnik dvigatelestroeniya – Bulletin of engine construction, 2006, no 2, pp. 8-16.

Sukhochev, G. A., Smol'yannikova, E. G., Kodentsev, S. N., Nebol'sin, D. M. Tekhnologii proizvoditel'nogo formirovaniya kombinirovannymi metodami poverkhnostei polostei i kanalov pod nanesenie zashchitnykh pokrytii [Technologies for productive formation by combined methods of surfaces of cavities and channels for applying protective coatings]. Uprochnyayushchie tekhnologii i pokrytiya – Strengthening technologies and coatings, 2009, no. 11(59), pp. 49-54.

Polyanskii, S. N., Butakov, S. V., Aleksandrov, V. A., Ol'kov, I. S. Obrabotka poverkhnosti struinymi metodami [Surface treatment by jet methods]. Agrarnyi vestnik Urala – Agrarian Bulletin of the Urals, 2015, no. 12(142), pp. 43-47.

Shpilev, V. V., Reshetnikov, M. K. Vliyanie faktorov gidroabrazivnoi rezki na sherokhovatost' obrabotannoi poverkhnosti, ee tverdost', oval'nost' i konusoobraznost' [Influence of water-jet cutting factors on the roughness of the processed surface, its hardness, ovality and taper]. Vestnik. Saratovskogo gosudarstvennogo tekhnicheskogo. Universiteta – Bulletin. Saratov State Technical. University, 2011, vol. 2, iss. 2, pp. 160-163.

Tarasov, V. A., Polukhin, A. N. Otsenka geometricheskikh parametrov formiruemoi poverkhnosti pri gidroabrazivnoi obrabotke [Assessment of geometric parameters of the formed surface during hydroabrasive treatment]. Vestnik MGTU im. N. E. Baumana. Ser. «Mashinostroenie» – Bulletin of MSTU im. N.E.Bauman. Ser. "Mechanical Engineering", 2012, no. 1, pp. 107-116.

Gorbatov, I. V., Orlov, Yu. A., Antyufev, V. A., Tel'gerekova, T. V., Orlova, N. Yu. Opredelenie geometricheskoi tochnosti i sherokhovatosti poverkhnosti malogabaritnykh detalei kruglogo i kvadratnogo secheniya, poluchaemykh v zavisimosti ot raspolozheniya v rabochem prostranstve printera po tekhnologii selektivnogo lazernogo plavleniya iz stali marki 12Х18Н10Т [Determination of geometric accuracy and surface roughness of small-sized parts of round and square cross-section, obtained depending on the location in the working space of the printer using the technology of selective laser melting from steel grade 12X18H10T]. Vestn. Kontserna VKO «Almaz – Antei», Moscow, 2019, no. 1, pp. 59-67.




DOI: https://doi.org/10.32620/aktt.2021.4.08