Method of fatigue calculation of damage in aircraft’s wing regular zones under random loading at different stages of a typical flight

Петро Олександрович Фомичов, Тетяна Сергіївна Бойко, Олександр Олександрович Севостьянов

Abstract


In accordance with the airworthiness standards, the aircraft structure must be operationally survivable, it means that structure must be able to remain efficiency in the presence of admissible damage. But, accumulating above than a certain level, damages cause fatigue failure of the structure, in the form of micro- and submicrocracks, thus reducing its strength characteristics. Currently, several approaches have been formed to ensure the safety of an aircraft structures in terms of strength. One of them is ensuring a safe resource (safe durability). This principle implies that during the specified service life of the product, no damage will occur in it, reducing the strength below the permissible level. The aircraft resource is limited “from above” by the durability of the regular zones of airframe. Therefore, predicting the durability of an aircraft wing structure at the design stage is a fundamental engineering problem to ensure its safety and economic efficiency. At the same time, the first step in dealing with aircraft fatigue damage at the design stage is the collection and assessment of the operational loads of the analog aircraft. However, at the design stage of a new aircraft model, obtaining such data is not always possible. Therefore, the purpose of this article is to develop a method for calculating fatigue damage at the stage of cracking and assessing the durability of regular zones of a transport aircraft wing, taking into account the conditions of its operation. The tasks to be solved are: to isolate the factors that determine the durability of the aircraft at flying in turbulent air; to take into account the asymmetry of loads and accumulated damage that occurs at each stage during the entire flight of the aircraft; to determine the aircraft's resource depending on the profile of a typical flight. The method is based on a standardized atmospheric turbulence model, typical flight profiles, fatigue characteristics of materials, the hypothesis of linear summation of damages and calculation based on nominal stresses. As result, comparison between the calculated integral repeatability of overloads and equivalent bending moments with the results of processing flight test data showed good agreements. Conclusions. The scientific novelty of the work lies in the fact that a method for calculating the fatigue damage of the regular wing zones, taking into account the expected flight profile of the aircraft was developed. This means that the proposed method makes it possible to carry out a preliminary assessment of the resource when designing an airplane without using data on the operational loads of an analogue airplane, and also estimate the residual resource of the airplane during its operation.

Keywords


calculation method, random loading, wing, fatigue damage, durability, typical flight

References


Feigenbaum, Y. M., Sokolov, Y. S. Analiz sovremennogo sostoyaniya i perspektiv razvitiya otechestvennoy sistemyi monitoringa ekspluatatsii silovoy konstruktsii grazhdanskih VS [Analysis of the current state and development prospects of the native monitoring system for the operation of the power structure of civil aircraft]. Nauch. Vestn. GosNII GA, 2015, no. 7, pp. 14-23.

Wei, H., Carrion, P., Chen, J., Imanian, A., Shamsaei, N., Iyyer, N., Liu, Y. Probabilistic fatigue life pre-diction of composite materials. International Journal of Fatique.2020, Second Edition, pp. 607-633. DOI: 10.1016/j.ijfatigue.2019.105462.

Rui, J., Xiaofan, H., Yuhai, L. Individual aircraft life monitoring: An engineering approach for fatigue damage evaluation. Chinese Journal of Aeronautics, 2018, Vol. 31, Iss. 4, pp. 727-739. DOI: 10.1016/j.cja.2018.02.002.

Li, J., Wang, X., Li, R., Qiu, Y. Multiaxial fatigue life prediction for metals by means of an improved strain energy density-based critical plane criterion. European Journal of Mechanics - A/Solids, 2021, vol. 90, Article Id: 104353. DOI: 10.1016/j.euromechsol.2021.104353.

Nesterenko, B. G., Nesterenko, G. I. Permissible stresses for transport aircraft structures according to fatigue and damage tolerance criteria. Journal of machinery manufacture and reliability, 2013, no. 2, pp. 114-123.

Rayher, V. L., Tsymbalyuk, V. I. Raschetniy metod opredeleniya ekvivalentnyh rejimov ispytaniy na vynoslivost kryila I fuzelyazha samoleta [Calculation method for determination of equivalent test modes for wing and fuselage endurance tests]. Tr. TsAGi, 1971, no. 1336, 44 p.

Orlova, T. I., Tsimbalyuk, V. I. Razrabotka metodiki formirovaniya blochnoy programmy kvazisluchaynogo nagruzheniya dlya resursnyh ispytaniy planera samolyota [Development of a methodology for the formation of a block quasi-random loading program for life tests of an airframe]. Trudy. TsAGi, 2009, no. 2683, pp. 47-62

Bojko, T. S. Metodika rascheta integralnoy povtoryaemosti vozdushnyh poryvov, deystvuyushih na samolyot v polyote [Methodology for calculating the integral repeatability of air gusts acting on an aircraft in flight]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2016, no. 2/129, pp. 42-48.

Federal Aviation Regulations. Airworthiness Standards: Transport Category Airplanes. FAR – 25, Part. G. 1990, pp. 211 – 214.

OST 1 02514-84. Model' turbulentnosti at-mosfery [Industry Standard 1 02514-84. Atmospheric turbulence model]. – Impr,. 01.01.1986. 13 p.

Boyko, T. S. Vlijanie shemy atmosfernoj turbu-lentnosti na kojefficient oslablenija poryva [The effect of atmospheric turbulence circuit for gust attenuation coefficient]. Voprosy proektirovanija i proizvodstva konstrukcij letatel'nyh apparatov : sbornik nauchnyh trudov Nacional'nogo ajerokosmicheskogo universiteta im. N. E. Zhukovskogo «KHAI» – Aircraft structure design and production questions: proc. of the National Aerospace University “KhAI”, 2009, no. 2 (58), pp. 97 – 105.

Boyko, T. S. Otsenka reaktsii uprugogo kryila na nepreryivnuyu atmosfernuyu turbulentnost. Aviatsionno-kosmicheskaya tehnika i tehnologiya [Evaluation of the response of an elastic wing to continuous atmospheric turbulence]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2015, no. 3(120), pp. 5-9.

Bisplinghoff, R. L., Eshli, H., Halfmen R. L. Aerouprugost [Aeroelasticity]. Izdatelstvo inostr. lit. Publ., 1958. 799 p.

Fomichev, P. A., Mandzyuk, S. F., Kleptsov, V. I. Utochnenie izgibayuschih momentov po kryilu samoleta s uchetom dannyih letnyih izmereniy [Refinement of bending moments along the wing of an aircraft taking into account flight measurement data]. Voprosyi proektirovaniya i proizvodstva konstruktsiy letatelnyih apparatov : sb. nauch. tr. Nats. aerokosm. un-ta im. N.E. Zhukovskogo «HAI», 2013, no. 4(76), pp. 7-14.

Boyko, T. S. Metodika rascheta dolgovechnosti regulyarnyih zon konstruktsii samoleta s zhestkim kryilom pri polete v turbulentnoy atmosfere [Method for calculating the durability of regular zones of an airplane structure with a rigid wing when flying in a turbulent atmosphere]. Povrezhdenie materialov vo vremya ekspluatatsii, metodyi ego diagnostirovaniya i prognozirovaniya : 2009 tr. Mezhdunar. nauch.-tehn. konf., Ternopol, pp. 227-232.

Kogaev, V. P. Raschetyi na prochnost pri napryazheniyah, peremennyih vo vremeni [Strength calculations under time-variable stresses]. Moscow, Mashinostroenie Publ., 1977. 232 p.

Rayher, V. L. Gipoteza spektralnogo summirovaniya i ee primenenie dlya opredeleniya ustalostnoy dolgovechnosti pri deystvii sluchaynoy nagruzki [ Spectral summation hypothesis and its application to determine fatigue life under the action of a random load] Trudyi TsAGI, 1969, no.1134. 38 p.

Bogdanov, B. F., Kolganova, Z. N., Zaviryuha, G. G. Spravochnye dannye po vynoslivosti konstrukcionnyh splavov: otchet [Structural Alloy Fatigue Reference Data: Report]. Мoscow, 1977, no. 1852 VII. 170 p.

Vorob'ev, A. Z., Ol'kin, B. I., Stebenev, V. N. Soprotivlenie ustalosti jelementov konstrukcij [Fatigue resistance of structural elements]. Moscow, Mashi-nostroenie Publ., 1990. 240 p.

Strizhius, V. E. Metodyi rascheta ustalostnoy dolgovechnosti elementov aviakonstruktsiy. [Methods for calculating the fatigue life of elements of aircraft structures]. Moscow, Mashinostroenie Publ., 2012. 271 p.

TsAGI otchet. Rekomendatsii po sposobam rascheta ustalostnogo povrezhdeniya i otsenki resursa konstruktsii samoleta. [TsAGI’s report. Recommendations on methods for calculating fatigue damage and assessing the life of an aircraft structure]. TsAGI Publ. 1971, no. 019520. 84 p.

Normyi lentoy godnosti grazhdanskih samoletov SSSR [Standards for the fitness band of civil aircraft of the USSR]. NLGS-3. MVK SSSR, 1984.

Fomichev, P. A., Boyko, T. S., Zarutskiy, A.V., Mandzyuk, S.F. Obosnovanie resursa regulyarnyih zon kryila samoleta Be-200ChS pri mnogotselevom primenenii : otchet o NIOKR [Justification of the resource of the regular wing zones of the Be-200ChS aircraft for multipurpose use: report] Nats. aerokosm. un-t im. N. E. Zhukovskogo «HAI», 2013, no. 102-13/2010. 119 p.




DOI: https://doi.org/10.32620/aktt.2021.3.02