CURRENT STATE OF THE PROBLEM OF THE DEVELOPMENT OF ACOUSTIC LINERS FOR GAS-TURBINE ENGINES

Євген Олександрович Римаренко

Abstract


A review of current international aviation noise requirements is provided. It is shown that international requirements for aircraft noise levels are constantly increasing. The rapid growth of the international fleet leads to an increase in the number of take-offs and landings of aircraft at airports, and as a result, the problem of aircraft noise still relevant. To reduce noise levels at airports, various methods are used, one of which is the operational limitations of aircraft concerning the levels of noise they create. In European Union countries there are operational restrictions for aircraft meeting the requirements of Chapter 3 with a noise margin of less than 10 EPNdB. For already established aircraft that have passed certification, again it is necessary to look for methods to reduce noise. The main type of aircraft in operation in the world is an aircraft with turbofan engines. For such an aircraft, the main sources of noise during take-off will be the noise of the fan and jet, while landing, the noise of the landing gear, flaps, slats, and fan noise. When choosing a method of reducing aircraft noise, it should determine the source that most affects the overall noise level. It has been determined that fan noise is one of the main sources of noise. Acoustic liners constructions are widely used to reduce the noise level created by the fan. They are one of the most priority areas for reducing fan noise. Achievements in the use of acoustic liners to decrease the noise of domestic aircraft An-124-100, An-148-100 are considered. It is noted that due to the increasing requirements for aircraft noise, it is necessary to use new acoustic liners with improved sound-absorbing properties. It was determined that it is possible to improve the sound-absorbing properties of the acoustic liners by expanding the frequency range of sound absorption of such structures.

Modern methods for improving the acoustic properties of the acoustic liners are presented: the use of multilayer resonant acoustic liners makes it possible to customize the design for an increased number of calculation parameters; the use of modified variants of the acoustic liners core such as corrugated core, oversized perforated core; the use of porous and porous fiber materials in the design of the acoustic liners to provide additional sound-absorbing ability, the use of low-frequency acoustic liners to reduce the noise of promising turbofan engines with a high and ultra-high bypass ratio.

Keywords


aircraft noise; noise-related operating restrictions; gas turbine engine; turbofan engine; fan noise acoustic liners; liner core; multilayer liners; porous material; low-frequency liners

References


Noise in Europe 2014. European Environment Agency report No 10/2014. – Luxembourg: Publications Office of the European Union, 2014 DOI: 10.2800/763331.

Sazonov, Je. V., Suhorukova, I. A. Ocenka shumovogo zagrjaznenija territorii poselenij, nahodjashhejsja v zone vlijanija ajerodromov [Assessment of noise pollution in the territory of settlements located in the zone of influence of aerodromes]. Vestnik MGSU, 2012, vol. 7, no. 2, pp. 130–134. DOI: 10.22227/1997-0935.2012.2.130-134.

Bzhezovs`ka, N. V., Nakonechna A. O. Problemy` vply`vu aviacijnogo shumu na navkoly`shnye seredovy`shhe ta zasoby` yix vy`rishennya [Problems of aviation noise impact on the environment and means of their solution]. Problemy` rozvy`tku mis`kogo seredovy`shha, 2018, no. 2(21), pp. 26-34. Available at: http://er.nau.edu.ua/handle/NAU/35066 – (аccessed 13.05.2020) (In Ukrainian).

Tokarev, V. I., Zaporozhecz`, O. I. Aviacijny`j shum, yak problema oxorony` navkoly`shn`ogo seredovy`shha. [Aviation noise as a problem of environmental protection]. Visny`k NAU, 1998, vol. 1, no. 1, pp. 457-465. DOI: 10.18372/2306-1472.1.11165.

Zaporozhecz`, O. I., Levchenko, L. O. Ocinyuvannya shumovogo vply`vu vid povitryany`x suden v rajoni aeroportu. [Estimation of noise impact from aircraft in the airport area]. Visny`k KrNU im. My`-xajla Ostrograds`kogo, 2017, no. 1 (102), pp. 121–128.

Gly`va, V. A., Levchenko, L. O., Yevtushonok, O. Ya., Xry`stun, O. Ya. Suchasni pidxody` do zny`zhennya rivniv shumu pobly`zu pidpry`yemstv z neperervny`m cy`klom vy`robny`cztva. [Modern approaches to noise reduction near enterprises with a continuous production cycle]. Visny`k NTUU "KPI". Seriya "Girny`cztvo", 2011, no. 20, pp. 223–228. DOI: 10.20535/2079-5688.2011.20.54582.

Metechko, L. B., Tihonov, A. I., Sorokin, A. E., Novikov, S. V. Vlijanie jekologicheskih normativov na razvitie aviacionnogo dvigatelestroenija. [The impact of environmental standards on the development of aircraft engine]. Trudy MAI, 2016, vol. 85. Available at: http://trudymai.ru/published.php?ID=67495 (аccessed 13.05.2020) (in Russian).

Zapororozhets, O., Tokarev, V., Attenborough, K. Aircraft noise. Assesment, prediction and control, Abingdon, Spon Press, 2011. 433 p.

Annex 16 to the Convention on International Civil Aviation. Environmental protection. Volume I. Aircraft noise. Eighth Edition. Montreal, International civil aviation organization Publ., 2017. 264 p. (in Russian).

Butov, A. M. Rynok produkcii grazhdanskogo aviastroenija [Civil Aircraft Market]. Nacional'nyj issledovatel'skij universitet "Vysshaja shkola jekonomiki". Available at: https://dcenter.hse.ru/data/

/11/19/1141804200/Рынок%20продукции%20гражданского%20авиастроения%202018.pdf (accessed 14.05.2020) (in Russian).

ICAO Council Annual Report 2016. Statistical data on the results of air transport in 2016. Available at: https://www.icao.int/annual-report-2016/Documents/ARC_2016_Air%20Transport%20Statistics_ru.pdf (аccessed 14.05.2020) (in Russian).

Doc 9829. Guidance on the balanced approach to aircraft noise management. Second edition. Montreal, International civil aviation organization Publ., 2008. 130 p. (in Russian).

Regulation (EU) No 598/2014 of the European parliament and of the Council of 16 April 2014 on the establishment of rules and procedures with regard to the introduction of noise-related operating restrictions at Un-ion airports within a Balanced Approach and repealing Directive 2002/30/EC. Available at: https:// eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=

CELEX:32014R0598&from=EN (аccessed 15.05.2020)

Typy povitryanykh suden, shcho skhvaleni dlya ekspluata-tsiyi v tsyvil'niy aviatsiyi Ukrayiny [Types of aircraft approved for operation in civil aviation of Ukraine]. Available at: https://avia.gov.ua/wp-content/uploads/2017/05/TL-0021.pdf. (аccessed 15.05.2020).

Popuga, A. I. Osnovnye napravlenija umen'shenija shuma vozdushnyh sudov. [The main directions of aircraft noise reduction]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2015, no. 9(126), pp. 20–25. Available at: http://nbuv.gov.ua/UJRN/aktit_2015_9_5 (аccessed 16.05.2020).

Munin, A. G. Aviacionnaja akustika [Aviation acoustics]. Moscow, Mashinostroenie Publ., 1986, vol. 1. 243 p.

Smith, M. J. T. Aircraft noise. Cambridge, Cambridge University Press, 1989. 359 p.

Samohin, V. G. Shum GTD. Vvedenie v avia-cionnuju akustiku [GTE noise. Introduction to Aviation Acoustics]. Moscow, MAI Publ., 2007. 152 p.

Bertsch, L., Simons, D. G., Snell, M. Aircraft Noise: The major sources, modelling capabilities, and reduction possibilities. Available at: https://www.researchgate.net/publication/274587628_Aircraft_Noise_The_major_sources_modelling_capabilities_and_reduction_possibilities. DOI: 10.34912/ac-n0is3. (accessed 17.05.2020).

Mihajlova, A. B., Ahmedzjanov, D. A., Mihajlov, A. E., Nigmatulin, R. R. Razvitie metodov i sredstv avtomatizirovannogo konceptual'nogo proektiro-vanija aviacionnyh gazoturbinnyh dvigatelej i nazemnyh gazoturbinnyh jenergeticheskih ustanovok [Development of methods and means of computer-aided conceptual design of aircraft gas turbine engines and ground gas turbine power plants]. Vestnik UGATU, 2013, vol. 17, no. 3 (56), pp. 69–78. Available at: http://journal.ugatu.ac.ru/index.php/Vestnik/article/view/1549 (accessed 17.05.2020).

Doc 9501. Environmental Technical Manual on the use of Procedures in the Noise Certification of Aircraft. Second edition. Montreal, International civil aviation organization Publ., 2015, 296 p. (in Russian)

Jalovenko, E. V., Zhuravljov, V. N. Zvukopogloshhajushhaja panel' gazoturbinnogo dvigatelja na baze irracional'nogo chisla Fibonachchi [Sound-absorbing panel of a gas turbine engine based on an irrational Fibonacci number]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2016, no. 8 (135), pp. 55-60.

Vodop'jan, E. A., Sereda, T. N., Rjabkov, V. I. Analiz metodov snizhenija aviacionnogo shuma v istochnike i na mestnosti [Analysis of methods for reducing aircraft noise in the source and on the ground]. Otkrytye informacionnye i komp'juternye integrirovannye tehnologii, 2019, no. 84, pp. 144-156. DOI: 10.32620/oikit.2019.84.07.

Munin, A. G., Kvitka, V. E. Aviacionnaja akustika [Aviation acoustics]. Moscow, Mashinostroenie Publ., 1973. 448 p.

Munin, A. G., Kuznecov, V. M., Leont'ev, E. A. Ajerodinamicheskie istochniki shuma [Aerodynamic noise sources]. Moscow, Mashinostroenie Publ., 1981. 248 p.

Postnov, V. I., Vjakin, V. N., Veshkin, E. A. Issledovanija optimizacii vybora zvukopogloshhajushhih konstrukcij [Studies of the optimization of the choice of sound-absorbing structures]. Vestnik Samarskogo gosudarstvennogo ajerokosmicheskogo universiteta, 2011, no. 3 (27), pp. 55-64.

Baklanov, V. S., Postnov, S. S., Postnova, E. A. Raschjot rezonansnyh zvukopo-gloshhajushhih konstrukcij dlja sovremennyh aviaci-onnyh dvigatelej [Calculation of resonant sound-absorbing structures for modern aircraft engines]. Matematicheskoe modelirovanie, vol. 19, no. 8, pp. 22-30.

Anoshkin, A. N., Zaharov, A. G., Gorodkova, N. A., Chursin, V. A. Raschjotno jeksperimental'nye issledovanija rezonansnyh mnogoslojnyh zvukopo-gloshhajushhih konstrukcij [Computationally experimental studies of resonant multilayer sound-absorbing structures]. Vestnik PNIPU. Mehanika, 2015, no. 1, pp. 5–20. DOI: 10.15593/perm.mech/2015.1.01.

Pjatkina, S. A., Tjurin, A. P., Parahin, D. V., Sevast'janov, B. V., Savel'ev, A. P., Bajazitov, V. S., Vekshin, D. A. Shumozashhitnaja panel' [Soundproof panel]. Patent RF, no. 2478762, 2013.

Krivonos, V. V., Zhelezina, G. F., Guljaev, I. N., Solov'eva, N. A., Sidorova, V. V., Fadeeva, V. M., Egorova, N. A., Haliulin, V. I., Dvoeglazov, I. V., Menjashkin, D. G. Zvukopogloshhajushhaja panel' [Sound absorbing panel]. Patent RF, no. 2307216, 2007.

Shul'deshov, E. M., Kraev, I. D., Petrova, A. P. Polimernyj zvukopoglo-shhajushhij material konstrukcija dlja snizhenija shuma na mestnosti aviacionnyh dvigatelej [Sound absorbing polymer construction to reduce noise in the area of aircraft engines]. Trudy VIAM, 2018, no. 2 (62), pp. 47–52. DOI: 10.18577/2307-6046-2018-0-2-6-6.

Farafonov, D. P., Migunov, V. P., Degovec, M. L., Aljoshina, R. Sh. Poristovoloknistyj me-tallicheskij material dlja zvukopogloshhajushhih kon-strukcij aviacionnyh dvigatelej [Porous fibrous metal material for sound-absorbing structures of aircraft engines]. Trudy VIAM, 2016, no. 4 (40), pp. 3–12. DOI: 10.18577/2307-6046-2016-0-4-1-1.

Kuznecov, V. M. Problemy snizhenija shuma passazhirskih samoljotov [The problems of noise reduction in passenger aircraft]. Akusticheskij zhurnal, 2003, vol. 49, no. 3, pp. 293–317.

Baklanov, V. S. Vibroakustika samoljotov novogo pokolenija s dvigateljami bol'shoj i sverh-bol'shoj stepeni dvuhkonturnosti [Vibroacoustics of a new generation of aircraft with engines of high and ultra-high bypass ratio]. Matematicheskoe modelirovanie, 2007, vol. 19, no. 7, pp. 27–38.

Sugimoto, R., Murray, P., Astley, R. J. Folded Cavity Liners for Turbo-fan Engine Intakes. Available at: https://www.researchgate.net/publication/268582852. DOI: 10.2514/6.2012-2291. (аccessed 20.05.2020).

Versavel, M., Moreau, L. Folded spiral-shaped cavities for nacelle acoustic liners: Impedance and attenuation modelling and comparison to experimental results. Available at: https://www.researchgate.net/publication/31382014. (accessed 21.05.2020).




DOI: https://doi.org/10.32620/aktt.2020.8.15