DISCHARGE CHARACTERISTICS OF THE MAGNETRON SYSTEM FOR SPUTTERING, DEPOSITION, AND NANOTECHNOLOGY APPLICATIONS
Abstract
Keywords
Full Text:
PDFReferences
Anders, A. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS). Journal of Applied Physics, 2017, vol. 121, no. 17, pp. 171101-1-171101-34. DOI: 10.1063/1.4978350.
Baranov, O., Bazaka, K., Kersten, H., Keida, M., Cvelbar, U., Xu, S., Levchenko, I. Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Applied Physics Reviews, 2017, vol. 4, no. 4, pp. 041302-1-041302-33. DOI: 10.1063/1.5007869.
Baranov, O., Romanov, M., Kumar, S., Zhong, X., Ostrikov, K. Magnetic control of breakdown: Toward energy-efficient hollow-cathode magnetron discharges. Journal of applied physics, 2011, v. 109, no. 6, pp. 063304-1-063304-8. DOI: 10.1063/1.3553853.
Bleykher, G. A., Borduleva, A. O., Krivobokov, V. P., Sidelev, D. V. Evaporation factor in productivity increase of hot target magnetron sputtering systems. Vacuum, 2016, no. 132, pp. 62-69. DOI: 10.1016/j.vacuum.2016.07.030.
Trieschmann, J., Ries, S., Bibinov, N., Awakowicz, P., Mráz, S., Schneider, J. M., Mussenbrock, T. Combined experimental and theoretical description of direct current magnetron sputtering of Al by Ar and Ar/N2 plasma. Plasma Sources Science and Technology, 2018, v. 27, no. 5, pp. 054003-1-054003-10. DOI: 10.1088/1361-6595/aac23e.
Shapovalov, V. I., Karzin, V. V., Bondarenko, A. S. Physicochemical model for reactive sputtering of hot target. Physics Letters A, 2017, v. 381, no. 5, pp. 472-475. DOI: 10.1016/j.physleta.2016.11.028.
Kelly, P. J., Arnell, R. D. Magnetron Sputtering: A Review of Recent Developments and Applications. Vacuum, 2000, no. 56, pp. 159-172. DOI: 10.1016/S0042-207X(99)00189-X.
Viloan, R. P. B., Gu, J., Boyd, R., Keraudy, J., Li, L., Helmersson U. Bipolar high power impulse magnetron sputtering for energetic ion-bombardment during TiN thin film growth without the use of a substrate bias. Thin Solid Films, 2019, no. 688, pp. 137350-1-137350-6. DOI: 10.1016/j.tsf.2019.05.069.
Baranov, O., Romanov, M., Wolter, M., Kumar, S., Zhong, X., Ostrikov, K. Low-pressure planar magnetron discharge for surface deposition and nanofabrication, Physics of plasmas, 2010, no 17, pp. 053509-1-053509-9. DOI: 10.1063/1.3431098.
Conrads, H. Schmidt, M. Plasma generation and plasma sources. Plasma sources science and technology, 2000, no. 9, pp. 441-454. DOI: 10.1088/0963-0252/9/4/301.
Keidar, M. Boyd, I. D., Beilis, I. I. Modeling of a high-power thruster with anode layer. Physics of plasmas, no. 11, 2004, pp. 1715-1722. DOI: 10.1063/1.1668642.
Lieberman, M. A., Lichtenberg A. J. Principles of plasma discharges for materials processing, Wiley Interscience, 2005. 572 p.
Bradley, J. W. Study of the plasma pre-sheath in magnetron discharges dominated by Bohm diffusion of electrons. Plasma sources science and technology, 1998, no. 7, pp. 572-580. DOI: 10.1088/0963-0252/7/4/014.
Morozov, A. I., Savelyev, V. V. Fundamentals of stationary plasma thruster theory. Review of Plasma Physics, Consultant Bureau, 2000. 203 p. DOI: 10.1007/978-1-4615-4309-1_2.
Maurya, D. Sardarinejad, A., Alameh, K. Recent developments in r.f. magnetron sputtered thin films for pH sensing applications – an overview. Coatings, 2014, vol. 4, no. 4, pp. 756-771. DOI: 10.3390/coatings4040756.
Gudmundsson, J. T., Brenning, N., Lundin, D., Helmersson, U. High power impulse magnetron sputtering discharge. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012, v. 30, no. 3, pp. 030801-1-030801-34. DOI: 10.1116/1.3691832.
Kolev, I., Bogaerts, A., Gijbels, R. Influence of electron recapture by the cathode upon the discharge characteristics in dc planar magnetrons. Physical review E, 2005, no. 72, pp. 056402-1-056402-11. DOI: 10.1103/PhysRevE.72.056402.
Costin, C., Popa, G., Gousset, G. On the secondary electron emission in dc magnetron discharge. Journal of optoelectronics and advanced materials, 2005, v. 7, no. 5, pp. 2465-2469.
Bogaerts, A., Bultinck, E., Kolev, I., Schwaederl, L., Van Aeken, K., Buyle, G., Depla D. Computer modeling of magnetron discharges. Journal of physics D: applied physics, 2009, no. 42, pp. 194018-1-194018-12. DOI: 10.1088/0022-3727/42/19/194018.
Corbella, C., Portal, S., Rao, J., Kundrapu, M. N., Keidar, M. Tracking nanoparticle growth in pulsed carbon arc discharge. Journal of Applied Physics, 2020, v. 127, no 24, pp. 243301-1-243301-16. DOI: 10.1063/5.001128.
Baranov, O., Levchenko, I., Xu, S., Lim, J. W. M., Cvelbar, U., Bazaka, K. Formation of vertically oriented graphenes: what are the key drivers of growth? 2D Materials, 2018, v. 5, no. 4, pp.044002-1-044002-12. DOI: 10.1088/2053-1583/aad2bc.
DOI: https://doi.org/10.32620/aktt.2020.6.08