APPLICATION OF CRITICAL NOZZLES FOR FAST MEASUREMENT OF VESSEL VOLUME

Сергій Ігорович Планковський, Ольга Володимирівна Шипуль, Сергій Олександрович Заклінський

Abstract


The subject of the study is methods for determining vessel volume with complex shapes. The aim of the study is a development and scientifically substantiate of a method for fast measurement of an internal cavity volume of a vessel having a complex geometric shape in a gaseous medium based on supercritical outflow. The task of the study is the development of a method for calculating the volumes of the gas path components for the previously proposed generator of gas mixtures, which based on the supercritical outflow from intermediate tanks with constant volume, and confirmation of the proposed method capabilities using a simulation of the volume measurement process by the same method. The following results were obtained. It is proposed the method for fast measurement of vessel volume with complex shape based on supercritical flow through nozzles with the predetermined flow rate and dynamic measured pressure. The range of measurement time is substantiated for which, on the one hand, the conditions for suppressing transient processes in the measured vessels after the beginning of the supercritical outflow of the process gas are satisfied, and on the other hand, the conditions for adiabatic outflow are provided. According to the simulation of measuring the volume of a complex-shaped vessel using the proposed method, the accuracy of determining the volume of the vessel was 0.0625% in relation to the CAD system data. To use the proposed method in practice, the measuring equipment should include a reference vessel, and the measurements themselves should be carried out in two stages, using the same gas for filling in both cases. In this case, at the first stage, according to the results of the control measurement when it expires from the reference vessel, the value of the flow coefficient is specified, and at the second stage, when it expires from the measured vessel, the required target volume is determined. The process of direct volume measurement, in this case, lasts up to 1 second, the accuracy of volume determination is expected to be 0.1%.

Keywords


vessel volume measurement; supercritical flow; numerical simulation

References


Murphy, A. B., Tanaka, M., Yamamoto, K., Tashiro, S., Sato, T., Lowke, J. J. Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. Journal of Physics D: Applied Physics, 2009, vol. 42, iss. 19, article ID: 194006. DOI: 10.1088/0022-3727/42/19/194006.

Peasura, P., Watanapa, A. Influence of shield-ing gas on aluminum alloy 5083 in gas tungsten arc welding. Procedia Engineering, 2012, vol. 29, pp. 2465-2469. DOI: 10.1016/j.proeng.2012.01.333.

Notargiacomo, A., Laghi, L., Rinaldi, A., M⊘ller, H., Hansen, K. K., Araneo, R., Pea, M., Di Gas-pare, L., De Seta, M., Bellucci, A., Girolami, M., Orlan-do, S., Trucchi, D. M. Femtosecond laser and reactive ion etching based treatments for nanoscale surface texturing of porous silicon carbide. Proc. of 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), Cork, Ireland, 2018. IEEE, 2018. pp. 1-4. DOI: 10.1109/NANO.2018.8626393.

Yilbas, B. S., Ali, H., Karatas, C. Laser gas as-sisted treatment of Ti-alloy: analysis of surface charac-teristics. Optics & Laser Technology, 2016, vol. 78, pp. 159-166. DOI: 10.1016/j.optlastec.2015.11.002.

Samadi, M., Eshaghi, A., Bakhshi, S. R., Aghaei, A. A. The influence of gas flow rate on the structural, mechanical, optical and wettability of dia-mond-like carbon thin films. Optical and Quantum Electronics, 2018, vol. 50, iss. 4, article ID: 193. DOI: 10.1007/s11082-018-1456-6.

Mauer, G., Hospach, A., Vaßen, R. Process de-velopment and coating characteristics of plasma spray-PVD. Surface and Coatings Technology, 2013, vol. 220, pp. 219-224. DOI: 10.1016/j.surfcoat.2012.08.067.

Plankovskii, S. I., Shipul', O. V., Zaklinskii, S. A. Perspektivy primeneniya sovremennykh metodov gen-eratsii gazovykh smesei dlya pretsizionnoi termoim-pul'snoi obrabotki [Application perspectives of modern methods for gas mixtures generating to precision ther-mal pulse treatment]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2017, vol. 3 (138), pp. 85-93.

Brewer, P. J., Miñarro, M. D., di Meane, E. A., Brown, R. J. C. A high accuracy dilution system for generating low concentration reference standards of reactive gases. Measurement, 2014, vol. 47, pp. 607-612. DOI: 10.1016/j.measurement.2013.09.045.

Plankovskyy, S. I., Shypul, O. V., Zaklinskyy, S. A., Tryfonov, O. V. Dynamic method of gas mixtures creation for plasma technologies. Problems of Atomic Science and Technology, 2018, vol. 6 (118), pp. 189-193.

Plankovskii, S. I., Shipul', O. V., Trifonov, O. V., Zaklinskii, S. A. Algoritm upravleniya sistemoi gener-atsii smesi dlya pretsizionnoi termoimpul'snoi obrabotki [Algorithm of mixture generation control system for precision thermal pulse treatment]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2018, vol. 5 (149), pp. 58–66. DOI: 10.32620/aktt.2018.5.09.

Gauzner, S. I., Kivilis, S. S., Osokina, A. P., Pav-lovskii, A. N. Izmerenie massy, ob"ema i plotnosti [Measurement of mass, volume and density]. Moscow, Izdatel'stvo standartov Publ., 1972. 623 p.

Sheng, H. P., Garza, C., Winter, D. C., De-skins, W. G. Method and apparatus for acoustically measuring the volume of an object. Patent USA, no. 4640130, 1987.

Johnson Jr, V. E. Device for determining the volume of objects using a chamber with two resonators to compensate for temperature and humidity effects. Patent USA, no. 5385069, 1995.

Veselkov, V. V., Rydlovskii, V. P., Shtaits, V. V. Sovershenstvovanie tekhnologii ispytanii na germetich-nost' zashchitnykh obolochek atomnykh sudov novykh proektov [Advancement of leakages testing technology for testing reactor containments of new atomic vessels]. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova, 2018, vol. 10, iss. 2, pp. 346-355. DOI: 10.21821/2309-5180-2018-10-2-346-355.

Isakov, V. D. Sposob opredeleniya ob"ema emkosti [Method of determining volume of container]. Patent USSR, no. SU1536209A1, 1990.

Zvegintsev, V. I. Gazodinamicheskie ustanovki kratkovremennogo deistviya. Ch. 1. Ustanovki dlya nauchnykh issledovanii [Gas-dynamic installations of short-term action. Part 1. Installations for scientific research]. Novosibirsk, Parallel' Publ., 2014. 551 p.

Bykovskii, F. A., Vedernikov, E. F. Koeffitsi-enty raskhoda nasadkov i ikh kombinatsii pri pryamom i obratnom techenii [Flow rates of nozzles and their combinations for forward and reverse flow]. Prikladna-ya mekhanika i tekhnicheskaya fizika – Journal of Applied Mechanics and Technical Physics, 1996, vol. 37, iss. 4, pp. 98–104.




DOI: https://doi.org/10.32620/aktt.2020.4.08