EFFECT OF THE SOLIDITY ON THE AERODYNAMIC LOADING OF THE AXIAL FAN

Екатерина Викторовна Дорошенко, Михаил Владимирович Хижняк, Юрий Матвеевич Терещенко

Abstract


The main requirements that apply to axial fans and axial compressors of aircraft gas turbine engines include minimum dimensions and weight; high aerodynamic load; high coefficient of performance; wide range of steady work; high reliability. For gas turbine engines, the requirements of minimum weight and dimensions are especially important, since the engines must provide flights at high velocities and altitudes. This study aims to assess the effect of the solidity of the impeller fan on the average radius on the aerodynamic loading of the impeller of an axial fan for an engine with a high bypass ratio. The object of the study is the impeller of the fan. The solidity of the impeller fan on the average radius varied in the range from 1.8 to 0.82, the number of blades of the impeller fan varied from 33 to 15, respectively. The studies in this work were carried out by the method of numerical experiment. The flow in the axial fans was simulated by solving the system of Navier-Stokes equations, which were closed by the SST turbulent viscosity model. Based on the analysis of the results of the study, an assessment is made of the influence of the solidity of the impeller fan at an average radius on the aerodynamic loading of the impeller of an axial fan for an engine with a high bypass ratio. The research results showed that with a decrease in the solidity of the impeller fan at an average radius of 1.8 to 0.82 in operating modes with an axial inlet velocity of 80 to 120 m / s, the impeller fan pressure ratio decreases by 0.11 ... 3.2 %. The maximum decrease in the fan pressure ratio increase for the fan impeller with the parameters studied is 3.2 %, with a decrease in the number of fan blades from 33 to 15, while the total weight of the blades decreases by 54.55 %. The decrease in the solidity on the average radius of the impeller of the studied fan leads to a decrease in the relative sizes of the low-velocity zones at the sleeve and on the periphery and to a decrease in the level of flow unevenness. A further reduction in the level of flow non-uniformity behind the fan is possible when using the boundary layer control in the fan - this is the task of subsequent studies.

Keywords


solidity; aerodynamic loading; impeller; fan; weight; numerical experiment

References


Holshhevnikov, K. V. Teorija i raschet aviacionnyh lopatochnyh mashin [Theory and calculation of aircraft blade machines]. Moscow, Mashinostroenie Publ., 1970. 614 p.

Tereshhenko, Ju. M., Kulik, N. S., Lastivka, I. A., Voljanskaja, L. G., Doroshenko, E. V., Tereshhenko, Ju. Ju. Ajerodinamicheskie sledy v kompressorah gazotur-binnyh dvigatelej [Aerodynamic traces in gas turbine engine compressors]. Kiev, NAU Publ., 2012. 232 p.

Korotygin, A. A., Bagrov, S. V., Pjatunin, K. R. Razrabotka konstrukcii monokolesa ventiljatora s polymi lopatkami dlja TRDD vysokoj stepeni dvuhkonturnosti [Development of a design for a monowheel of a fan with hollow blades for high-bypass turbofan engines]. Jelektronnyj zhurnal «Trudy MAI», no. 45. 20 p.

Kablov, E. N., Skibin, V. A., Abuzin, Ju. A., Kochetov, V. N., Shavnev, A. A., Karimbaev, T. D., Luppov, A. A. Shirokohordnye lopatki dlja TRDD 5-6 pokolenij [Wide chord blades for turbofan engines of 5-6 generations], 2005. 30 p. Available at: https://www.viam.ru/public/files/2005/2005-204474.pdf (accessed 20.04.2020).

Mihalkin, A. A. Rabochie lopatki ventiljatora perspektivnyh TRDD [Fan blades for prospective turbofan engines]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2013, no. 9 (106), pp. 97-100.

Joly, M. M., Verstraete, T., Paniagua, G. Multidisciplinary design optimization of a compact highly loaded fan. Structural and Multidisciplinary Optimization. 2014, no. 49, pp. 471–483. DOI: 10.1007/s00158-013-0987-5.

Xue Rui, Jiang Jun, Zheng Xing, Gong Jian‑liang, A. Jackson Study of Noise Reduction Based on Optimal Fan Outer Pressure Ratio and Thermodynamic Performance for Turbofan Engines at Conceptual Design Stage. International Journal of Aeronautical and Space Sciences, 2020, vol. 21, pp. 439-450. DOI: 10.1007/s42405-019-00236-8.

Batyaev, E. A., Kurzin, V. B. Method of optimization of blade shapes in aerodynamic design of the fan cascade. Journal of Applied Mechanics and Technical Physics, 2002, vol. 43, no. 5, pp. 701-705.

Cheng-Hung Huang, Chung-Wei Gau An optimal design for axial-flow fan blade: theoretical and experimental studies. Journal of Mechanical Science and Technology, 2012, vol. 26 (2), pp. 427-436. DOI: 10.1007/s12206-011-1030-7.

Arhipov, D. V. Osobennosti ajerodinamiches-kogo proektirovanija vysokonapornyh stupenej mnogostupenchatyh osevyh [Features of aerodynamic design of high-pressure stages of multistage axial compressors]. Vestnik MGTU im. N. Je. Baumana. Ser.: Mashinostroenie, 2010, no. 3, pp. 77-80.

Kisljak, M. I., Komarov, V. V., Mitrahovich, M. M. Issledovanie vlijanija parametrov setki na rezul'-taty CFD raschjotov stupeni ventiljatora TRDD [Investigation of the influence of grid parameters on the results of CFD calculations of the turbojet fan stage]. Tehnologicheskie sistemy, 2016, no. 3 (76), pp. 60 – 68.

Kisljak, M. І., Komarov, V. V., Mіtrahovich, M. M. Viznachennja racіonal'noї modelі turbulentnostі dlja otrimannja harakteristik stupenі ventiljatora os'-ovogo kompresora gazoturbіnnogo dviguna z vikoristannjam programnogo kompleksu ANSYS [Determination of a rational model of turbulence to obtain the characteristics of the fan stage of the axial compressor of a gas turbine engine using the ANSYS software package]. Tehnologicheskie sistemy, 2015, no. 3 (72), pp. 62 – 67.




DOI: https://doi.org/10.32620/aktt.2020.4.05