INVESTIGATION OF MECHANICAL PROPERTIES AND STRUCTURE OF IN718 ALLOY PRODUCED BY 3D-PRINTING

Никита Олегович Коваль, Оксана Сергеевна Воденникова

Abstract


The subject of research – the process of structure formation and improvement of mechanical properties of high-resistant alloys obtained by 3D-printing. The purpose of work – control the level of mechanical properties of high-resistant alloys obtained by 3D-printing for the manufacture of parts of aircraft gas turbine engines. Objectives – experimental determination of mechanical properties of heat-resistant nickel alloy IN718 obtained by selective laser sintering of LPW and Sino Euro powders both in the horizontal XY and in the vertical Z direction; a comparative analysis of the mechanical properties of IN718 and ЭП718-ВД(ИД) (ХН45МВТЮБР) alloys according to ASM 5662M and TU 14-1-3905-85; a study of the structure of samples of IN718 alloy before and after heat treatment. Research methods – when summarizing and analyzing scientific and technical literature in the direction of studying mechanical properties and forming the structure of heat-resistant nickel alloys obtained by the method of selective laser sintering, an integrated approach was used; processing and analysis of experimental data on determining the mechanical properties of the IN718 alloy in the three-dimensional direction (horizontal direction XY and vertical direction Z); metallographic studies of samples of the IN718 alloy made by 3D-printing were carried out before and after heat treatment. The results obtained - by comparing the mechanical properties of the heat-resistant alloy IN718 obtained by 3D printing from powders LPW and Sino Euro with the normative characteristics ASM 5662M (for alloy IN718) and TU 14-1-3905-85 (for alloy ЭП718-ВД) it was found that for vertical samples (grown in the Z direction) a certain decrease in the strength characteristics and an increase in plastic characteristics compared with the values of horizontal samples (grown in the XY direction), and in terms of impact strength, the IN718 alloy exceeds the norm in the researched temperature range 3.75 times. Scientific novelty – the dependence of the structural characteristics and mechanical properties of the IN718 alloy on the direction of part growth has been established and it has been shown that after heat treatment it is possible to obtain a dense, uniform microstructure characterized by a fine-grained structure with micro grains that are elongated in the direction of sample growth.

Keywords


additive technologies; 3D-printing; selection laser sintering; heat-resistant alloys; mechanical properties

References


Graf, В., Gook, S., Gumenyuk, A., Rethmeier, M. Combined laser manufacturing for complex turbine blades. Glabal'naja jadernaja bezopasnost', 2016, no. 3(20), pp. 34-42.

Vekhov, A. S., Titarenko, S. A. Primenenie additivnykh tekhnologii v sovremennom proizvodstve [The use of additive technologies in modern production]. Reshetnevskie chteniya, 2018, vol. 1, no. 22, pp. 90-92.

Balyakin, A. V., Smelov, V. G., Chempinskii, L. A. Primenenie additivnykh tekhnologii dlya sozdaniya detalei kamery sgoraniya [The use of additive technologies to create combustion chamber parts]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S. P. Koroleva, 2012, no. 3-2(34), pp. 47-52.

Shegidevich, A., Zhukova, A., Zaiko, A. Rol' additivnykh tekhnologii v aviatsii [Role of additive technologies in aviation]. Nauka i innovatsii, 2019, no. 9 (199), pp. 29-34.

Bingheng, Lu., Dichen, Li, Xiaoyong, Tian. Development Trends in Additive Manufacturing and 3D Printing. Engineering, 2015, no. 1 (1), pp. 85-89. DOI: 10.15302/J-ENG-2015012.

3D printing in aerospace and defense market -growth, trends, and forecast (2019-2024). Industrial report. Available at: https://www.

mordorintelligence.com/industry-reports/3d-printing-in-aerospace-and-defense-market (accessed 18.04.2020).

Leonenkov, A. D., Dvirnyi, V. V. Perspektivy primeneniya additivnykh tekhnologii v aerokosmicheskoi otrasli [Prospects for the use of additive technologies in the aerospace industry]. Reshetnevskie chteniya, 2017, no. 21-2, pp. 632-633.

Logunov, A. V. Zharoprochnye nikelevye splavy dlya lopatok i diskov gazovykh turbin [Heat-resistant nickel alloys for blades and disks of gas turbines]. Rybinsk, OOO Izdatel'skii dom «Gazoturbinnye tekhnologii» Publ., 2017, 854 p.

Oryshchenko, A. S., Kuznetsov, P. A., Bobyr', V. V., Savin, V. I., Tereshchenko, A. V. Primenenie tekhnologii selektivnogo lazernogo spekaniya i ob"emnoi lazernoi naplavki dlya sozdaniya i vosstanovleniya detalei, ispol'zuemykh v mashinostroenii [The use of selective laser sintering technology and bulk laser cladding to create and recovery parts used in mechanical engineering]. Progresivnі tekhnologії і sistemi mashinobuduvannya : mіzhnarodnii zbіrnik naukovikh prats', 2013, vol. 46, pp. 238-244.

Evgenov, A. G., Rogalev, A. M., Nerush, I. S. Mazalov, S. V. Issledovanie svojstv splava JeP648, poluchennogo metodom selektivnogo lazernogo splavlenija metallicheskih poroshkov [Investigation of properties of ЭП648 alloy obtained by selective laser smelting metal powders]. Trudy VIAM, 2015, no. 2, pp. 2-12.

Korsmik, R. S., Turichin, G. A., Klimova-Korsmik, O. G., Zemlyakov, E. V., Babkin, K. D. Lazernaya poroshkovaya vosstanovitel'naya naplavka lopatok gazoturbinnogo dvigatelya [Laser powder reconstructed surfacing of gas turbine engine blades]. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2016, vol. 15, no. 3, pp. 15-20.

Prager, S. M., Solodova, T. V., Tatarenko, O. Yu. Issledovanie mekhanicheskikh svoistv i struktury obraztsov, poluchennykh metodom selektivnogo lazernogo splavleniya (SLS) iz splava VZh159 [Investigation of the mechanical properties and structure of samples obtained by selective laser smelting (SLS) from ВЖ159 alloy]. Zharoprochnye splavy i stali. Trudy VIAM, 2017, no. 11(59), pp. 3-11.

Mazalov, I. S., Evgenov, A. G., Prager, S. M. Perspektivy primeneniya zharoprochnogo strukturno-stabil'nogo splava VZh159 dlya additivnogo proizvodstva vysokotemperaturnykh detalei GTD [Prospects for the use of heat-resistant structurally stable alloy ВЖ159 for additive production of high-temperature parts of gas turbine engines]. Aviatsionnye materialy i tekhnologii, 2016, no. S1 (43), pp. 3-7.

Lysenko, N. A., Pedash, A. A., Klyuchikhin, V. V., Naumik, V. V. Poluchenie vyzhigaemykh modelei metodom 3D-printinga dlya otlivok gazoturbinnykh dvigatelei [Obtaining burnable models by 3D printing for castings of gas turbine engines]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2019, no. 7 (159), pp. 128-133. DOI: 10.32620/aktt.2019.7.18.

Catchpole-Smitha, S., Aboulkhaira, N., Parrya, L., Tuck, C., Ashcroft, I. A., Clare, A. Fractal scan strategies for selective laser melting of 'unweldable' nickel superalloys. Additive Manufacturing, 2017, vol. 15, pp. 113-122. DOI: 10.1016/j.addma.2017.02.002.

Gorbovets, M. A., Belyaev, M. S., Ryzhkov, P. V. Soprotivlenie ustalosti zharoprochnykh nikelevykh splavov, poluchennykh metodom SLS [Fatigue resistance of heat-resistant nickel alloys obtained by the SLS method]. Aviatsionnye materialy i tekhnologii, 2018, no. 3 (52), pp. 50-55.

Andrievskii, M. V., Mitikov, M. A., Adzhamskii, S. V., Shamrovskii, D. A. Primenenie additivnykh tekhnologii dlya proizvodstva kamer sgoraniya reaktivnykh dvigatelei [The use of additive

technologies for the production of combustion chambers of jet engines]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2017, no. 6 (141), pp. 17-22.

Borisov, V. E. Formirovanie zadannoi struktury turbinnoi lopatki iz zharoprochnogo nikelevogo splava metodom selektivnogo lazernogo plavleniya [Formation of a given structure of a turbine blade from heat-resistant nickel alloy by selective laser smelting]: dis. na soisk. uchen. step. kand. tekhn. Nauk. Sankt-Peterburg, Federal'noe gosudarstvennoe avtonomnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya «Sankt-Peterburgskii politekhnicheskii universitet PetraVelikogo», 2017. 152 p.

Mostafa, A., Rubio, I. P., Brailovski, V., Jahazi, M., Medraj, M. Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Ho-mogenization and HIP Treatments. Metals, 2017, vol. 7. 196 p. DOI: 10.3390/MET7060196.

Amato, K.N., Gaytan, S. M., Murr, L. E., Martinez, E., Shindo, P. W., Hernandez, J., Collins, S., Medina, F. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Materialia, 2012, vol. 60 (5), pp. 2229-2239. DOI: 10.1016/J.ACTAMAT.2011.12.032.

Trosch, T., Strobner, J., Volkl, R., Glatzel, U. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Materials Letters, 2016, vol. 164, pp. 428-431. DOI: 10.1016/j.matlet.2015.10.136.




DOI: https://doi.org/10.32620/aktt.2020.3.03