OPTIMUM DESIGN OF A STATICALLY DEFINABLE BEAM WITH LIMITATION ON THE MAXIMUM BEAM DEFLECTION

Сергей Сергеевич Куреннов

Abstract


Here is solved the optimization problem for the longitudinal depth distribution in the beam with a limitation on the maximum value of deflection. A review of the references is done, and it is shown that the known solutions are either erroneous, because they are based on false hypotheses, or have a narrow field of application, limited only to symmetrical constructions for which the point of the maximum deflection is known a priori. The paper considers a beam of the rectangular cross-section of constant width. The beam is assumed to be statically determinate, and the load is arbitrary and asymmetric and multidirectional as well. The points (or point) of the beam maximum deflections are unknown in advance and would be determined in the problem-solution procedure. A linear problem is considered. The optimization criterion is the mass of the beam. To find the deflections of the beam, i.e. to solve the differential equation of a variable cross-section beam bending the finite difference method is used. The design problem is reduced to the required beam depths obtaining in the system of nodal points. In this case, the desired solution must satisfy the restriction system for the nodal points shift and the sign of variables as well. Since the restrictions of the shift of each node are considered separately and independently, so the proposed method allows flexible control of the beam shift restrictions. Using the change of variables proposed in the paper, the problem to be solved is reduced to a nonlinear programming problem where the criterion function is separable and restrictions are linear functions. Using linearization, this problem can be reduced to the linear programming problem relatively to new variables. The model problem is solved, and it is shown that the proposed algorithm efficiently allows us to solve the problems of the beam optimal design with the restrictions of the maximally allowed deflection. The proposed approach can be spread for the strength limitations, for beams of variable width, I-beam cross-section, etc.

Keywords


beam; optimization; constraints; finite difference method; optimal design

References


Kondratev, A. V. Obzor i analiz sushestvuyushih metodologij optimalnogo proektirovaniya kompozitnyh agregatov raketno-kosmicheskoj tehniki [Review and analysis of existing methodologies for the optimal design of composite units of rocket and space technology]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2018, no. 6, pp. 52-66.

Hasan Imam, M. Three‐dimensional shape optimization. International Journal For Numerical Methods In Engineering, 1982, vol. 18, pp. 661-673. DOI: 10.1002/nme.1620180504.

Eschenauer, H. A., Olhoff, N. Topology optimization of continuum structures: a review. Appl. Mech. Rev, 2001, vol. 54(4), pp. 331-390. DOI: 10.1115/1.1388075.

Banichuk, N. V. Optimizacija form uprugih tel [Optimization of the forms of elastic bodies]. Moscow, Nauka Publ., 1980. 256 p.

Banichuk, N. V. Vvedenie v optimizaciju konstrukcij [Introduction to Structural Optimization]. Moscow, Nauka Publ., 1986. 304 p.

Aljohin, V. V. Proektirovanie poperechno-sloistoj konsoli minimal'noj massy pri ograni-chenii na maksimal'nyj progib [Design of a transversely-layered cantilever of minimum weight with limitation on maximum deflection]. Prikladnaja mehanika i tehnicheskaja fizika, 2007, vol. 48, no. 4, pp. 104-110.

Banichuk, N. V., Barsuk, A. A., Ivanova, S. Ju., Makeev, E. V. Optimizacija gibkih balok [Optimization of flexible beams]. Izv. RAN. MTT, 2010, no. 5, pp. 57-70.

Abdalla, H. M., Casagrande, D. On the longest reach problem in large deflection elastic rods. Int. J. of Non-Linear Mech, 2020, vol. 119, DOI: 10.1016/j.ijnonlinmec.2019.103310.

Hosseini, S.F., Moetakef-Imani, B., Hadidi-Moud, S. et al. Pre-bent shape design of full free-form curved beams using isogeometric method and semi-analytical sensitivity analysis. Struct. Multidisc. Optim., 2018, vol. 58, pp. 2621-2633. DOI: 10.1007/s00158-018-2041-0.

Gurchenkov, A. A., Vilisova, N. T., German, I. I., Romanenkov, A. M. Uprugie balki minimal'nogo vesa, pri nalichii neskol'kih vidov izgibajushhih nagruzok [Elastic beams of minimum weight, in the presence of several types of bending loads]. Inzhenernyj zhurnal: nauka i innovacii, 2015, vol. 5, DOI: 10.18698/2308-6033-2016-9-1531.

Karpov, Ja. S. Proektirovanie detalej i ag-regatov iz kompozitov: uchebnik [Designing parts and assemblies from composites: a textbook]. Kharkiv, KhAI Publ., 2010. 768 p.

Gagauz, F. M., Karpov, Ja. S. Optimizacija konstruktivnyh parametrov balok i lonzheronov iz kompozici-onnyh materialov [Optimization of structural parameters of beams and spars from composite materials] Voprosy proektirovaniya i proizvodstvakonstruktsii letatel'nykh apparatov, 2017, no. 3, pp. 15-21.

Sejranjan, A. P. Optimal'noe proektirova-nie balok pri ogranichenijah po progibam [Optimum beam design with deflection limitations] Izvestija AN Armjanskoj SSSR. Serija Mehanika, 1975, no. 6, pp. 24-33.

Banichuk, N. V., Makeev, E. V. Variational method for non-classical problems of mechanics with constraints based on finite elements approximations and local variations. PNRPU Mechanics Bulletin, 2017, no. 3, pp. 37-52. DOI: 10.15593/perm.mech/2017.3.03.

Vagner, G. Osnovy issledovanija operacij. T. 2. [Fundamentals of operations research. Vol. 2]. Moscow. Mir Publ., 1973. 489 p.

Kurennov, S. S. Chislennyj metod rascheta dinamicheskih napryazhenij v kleevom soedinenii [Numerical method for calculating dynamic stresses in adhesive joint]. Voprosy proektirovaniya i proizvodstvakonstruktsii letatel'nykh apparatov, 2010, no. 4, pp. 133-139.




DOI: https://doi.org/10.32620/aktt.2020.1.05