DESIGN-EXPERIMENTAL TECHNIQUE FOR DETERMINING A DYNAMIC MODEL OF ELASTICITY OF PRODUCED SEALING COATINGS OF GTE TURBINES

Виктор Леонидович Грешта, Дмитрий Викторович Павленко, Ярослав Викторович Двирнык, Дарья Владимировна Ткач

Abstract


The aim of the work was the development and testing of a method for determining the dynamic modulus of elasticity of running-in sealing gasket coatings for GTE turbines. Many contradictory requirements are put forward to these coatings, therefore, to satisfy them, it was proposed to apply coatings with variable properties at various stages of the life cycle of gas turbine engines. However, the development of new coatings requires a variety of mechanical tests, including to evaluate the dynamic modulus of elasticity. The porous structure and, accordingly, the low strength of the developed coatings do not allow the use of standard methods for the evaluation of mechanical properties, so there is a need to develop a special method for determining the elastic modulus. In the course of the study, the finite element method, statistical methods, experimental methods for determining the natural frequency of oscillations were applied. Investigations were carried out for running-in sealing coating of the stator of turbines of gas turbine engines KNA-82 + CoNiCrAlY. The numerical experiment was performed in the Ansys Work-bench 2019 R2 software package. Since coatings are used at elevated temperatures, it was necessary to estimate the modulus of elasticity at various temperatures, which required additional studies of temperature-dependent properties that affect the desired value. As a result of the implementation of the plan of a numerical experiment to determine the frequency of natural oscillations of samples with a coating while varying its elastic modulus and temperature, as well as solving the inverse problem of establishing the dependence of the dynamic elastic modulus on the natural oscillation frequency of a coated sample, we developed a calculation and experimental method for determining the dynamic modulus elasticity of running-in sealing coatings of GTE turbines. The developed technique is used to determine the dynamic modulus of elasticity of running-in coatings of different chemical composition and structure in the range of operating temperatures, which can be used to optimize their composition, structure, and properties.

Keywords


experimental design; modulus of elasticity; surface-to-be-coated coating; gas turbine engine; method; natural frequency; finite element method; modulus of elasticity

References


Fedotov, A. F. Prognozirovanie jeffektivnyh modulej uprugosti poristyh kompozicionnyh materialov [Prediction of effective moduli of elasticity of porous composite materials]. Izvestija vuzov. Poroshkovaja metallurgija i funkcional'nye pokrytija, 2015, no. 1. pp. 32-37.

Poljakov, V. V., Egorov, A. V., Tureckij, V. A. Moduli uprugosti poristyh psevdosplavov [Elastic moduls of porous pseudoalloy]. Izvestija Altajskogo gosudarstvennogo universiteta, 2004, no. 1, pp. 119-121.

Chernous, D. A., Petrokovec, E. M., Konek, D. A., Shil'ko, S. V. Metody rascheta mehanicheskih harakteristik poromaterialov maloj plotnosti (obzor) [Methods for calculating the mechanical characteristics of low density porous materials (review)]. Mehanika kompozicionnyh materialov i konstrukcij, 2001, vol. 7, no. 4, pp. 533-545.

Ignat'kov, D. A. Opredelenie harakteristik uprugosti neodnorodnyh materialov dinamicheskim metodom [Determination of elastic characteristics of heterogeneous materials by the dynamic method]. Elektronnaja obrabotka materialov, 2011, no. 47(1), pp. 53–62.

Zelenina, E. A., Loskutov, S. V., Ershov, A. V. Metod rascheta fiziko-mehanicheskih harakteristik plazmennogo pokrytija na podlozhke pri ispytanii obrazcov na izgib [Method for calculating the physicomechanical characteristics of a plasma coating on a substrate when testing bending specimens]. Novі materіali і tehnologії v metalurgії ta mashinobuduvannі, 2016, no. 2, pp. 107-110.

Beghinf, M., Bertini, L., Frendo, F., Giorni, E. Determination Of Thermal Sprayed Coatings Elastic Modulus Using Four Point Bending Test. WIT Transactions on Engineering Sciences, 1997, vol. 17, pp. 61-70.

Arciniegas, M., Aparicio, C., Manero, J., Gil, F. J. Low elastic modulus metals for joint prosthesis: Tantalum and nickel–titanium foams. Journal of the European Ceramic Society, 2007, no. 27(11), pp. 3391–3398. DOI: 10.1016/j.jeurceramsoc.2007.02.184.

Bellet, D., Lamagnère, P., Vincent, A., Bréchet, Y. Nanoindentation investigation of the Young’s modulus of porous silicon. Journal of Applied Physics, 1996, no. 80(7), pp. 3772–3776. DOI: 10.1063/1.363305.

Duan, K., Steinbrech, R. W. Influence of sample deformation and porosity on mechanical properties by instrumented microindentation technique. Journal of the European Ceramic Society, 1998, no. 18(2), pp. 87–93. DOI: 10.1016/s0955-2219(97)00088-5.

Serenko, A. N., Rojanov, V. A., Zaharov, S. V. Modul' uprugosti metalla pokrytija [The modulus of elasticity of the metal coating]. Vestnik Priazovskogo gostehuniversiteta : Sb. nauch. trudov. Mariupol', 1999, no. 8, pp. 130-133.

Azarmi, F., Coyle, T., Mostaghim, J. Young’s modulus measurement and study of the relationship between mechanical properties and microstructure of air plasma sprayed alloy 625. Surface and Coatings Technolog, 2009, no. 203(8), pp. 1045–1054. DOI: 10.1016/j.surfcoat.2008.09.035.

Texier, D., Monceau, D., Crabos, F., Andrieu, E. Tensile properties of a non-lineof-sight processed β-γ-γ’ MCrAlY coating at high temperature. Surface and Coatings Technology, 2017, no. 326, Part A, pp. 28-36. DOI: 10.1016/j.surfcoat.2017.07.026.

Oh, I.-H., Nomura, N., Masahashi, N., Hanada, S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Materialia, 2003, no. 49(12), pp. 1197–1202. DOI: 10.1016/j.scriptamat.2003.08.018.




DOI: https://doi.org/10.32620/aktt.2019.8.16