NUMERICAL STUDY OF BASIC SYSTEMS IN SOLVING BOUNDARY VALUE PROBLEMS ON A SEGMENT USING SPECTRAL METHODS

Сіявуш Ахмедович Халілов, Денис Анатолійович Ткаченко, Надія Віталіївна Бондарева, Віталій Борисович Минтюк

Abstract


Spectral methods have indisputable advantages over numerical methods in solving various problems of mathematical physics. The advantages are the high convergence and accuracy of approximate solutions, which is most relevant for calculating the strength of aerospace machinery. The problem of choosing basic functions inevitably arises when applying spectral methods. The problem is that, in addition to providing exponential convergence, the system of basic functions has to satisfy some other requirements: stability of approximate solutions and procedures for their obtaining, reduction of calculations, convenience, and some more. This paper compares eleven basic systems: the systems constructed in the form of linear combinations of Legendre polynomials that satisfy either only the main boundary conditions or the main and natural ones, similar systems constructed using Chebyshev polynomials, and the functions proposed by Khalilov S. A., systems of Lagrange – Lobatto interpolation polynomials using the Legendre and Chebyshev interpolation points, system of trigonometric functions, exponentiation, and system of finite functions of the finite element method. The convergence speed of the approximate solution to the exact one, the error in the equations of boundary value problems, and the condition numbers of matrices of linear algebraic equation systems, which arise when using variational, projection and collocation methods, were compared. The study performed on three test problems modeling beam bending: classic beam bending under unevenly distributed load, bending of additionally stretched beam on the elastic basis and geometrically nonlinear bending. The impact of the Gibbs effect on the approximate solution convergence is investigated. Among the considered basic systems, the system of basis functions in the form of linear combinations of Legendre polynomials has proved to be the best, as they satisfy all boundary conditions. This basis leads to the highest speed at which approximate solution approaches the exact one, the error in the equations approaches to zero, and also it has the smallest increase in the condition number with the increase in the order of SLE matrices, which appear due to variational and projection methods. The finite functions of the finite element method have proved to be the worst in terms of accuracy and convergence.

Keywords


basic system; spectral methods; accuracy, convergence, and stability of approximate solutions

References


Boyd, J. P. Chebyshev and Fourier Spectral Methods, New York, Dover Publ., 2001. 680 p.

Martin, R., Chevrot, S., Komatitsch, D., Seoane, L., Spangenberg, H., Wang, Y. A high-order 3-D spectral-element method for the forward modelling and inversion of gravimetric data-application to the western Pyrenees. Geophysical Journal International Bruinsma, 2017, vol. 209, no. 1, рр. 406–424.

Bazán, F. S. V., Bedin, L. Filtered spectral differentiation method for numerical differentiation of periodic functions with application to heat flux estimation. Computational and Applied Mathematics, 2019, vol. 38, no. 4, pp. 165-188.

Woywod, C., Roy, S., Maiti, K., Ruud, K. An efficient pseudo-spectral method for the description of atomic electronic wave functions – application to the hydrogen atom in a uniform magnetic field. Chemical Physics, 2018, vol. 515, pp. 299-314.

Jani, M., Babolian, E., Javadi, S. Bernstein modal basis: Application to the spectral petrov-galerkin method for fractional partial differential equations. Mathematical Methods in the Applied Sciences, 2017, vol. 40, no. 18, pp. 7663-7672.

Mikhlin, S. G. Chislennaya realizatsiya variatsionnykh metodov [Numerical realization of variational methods]. Moskow, «Nauka» Publ., 1966. 432 р.

Shen, J., Tang, T., Wang, L. Spectral Methods. Algorithms, Analysis and Applications. Springer Series in Computational Mathematics, 2011, vol. 41. 470 p.

Mintyuk, V. B. Tochnost', skhodimost' i ustoichivost' metoda Releya - Rittsa pri razlichnykh bazisakh [Accuracy, convergence and stability of Rayleigh-Ritz method for different bases]. Aviacijno-kosmicna tehnika i tehnologia - Aerospace technic and technology, 2008, vol. 52, no. 5, pp. 17-23.

Khalilov, S. A., Mintyuk, V. B., Tkachenko, D. A. Postroenie i issledovanie analitiko-chislennogo resheniya zadachi ob izgibe zhestko zashchemlennoi pryamougol'noi plastiny [Development and research of the analytic-numerical solution for the bending problem of stiffened rectangular plate]. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii : sb. nauch. tr. Nats. aerokosm. un-ta im. N. E. Zhukovskogo «KhAI» [Open information and computer integrated technologies : scientific papers collection of Zhukovsky National Aerospace university]. Kharkiv, «KhAI» Publ., 2011, vol. 49, pp. 81 – 94.

Shen, J. Efficient spectral-Galerkin method I. direct solvers for second- and fourth-order equations by using Legendre polynomials. SIAM J Sci Comput, 1994, vol. 15, pp. 1489-1505.

Mintyuk, V. B. Ortonormirovannyi bazis dlya odnomernykh kraevykh zadach [Orthonormal basis for 1-dimensional boundary value problems]. Aviacijno-kosmicna tehnika i tehnologia - Aerospace technic and technology, 2007, vol. 41, no. 5, pp. 32-36.

Shen, J. Efficient spectral-Galerkin method II. direct solvers for second- and fourth-order equations by using Chebyshev polynomials. SIAM J Sci Comput, 1995, vol. 16, pp. 74-87.

Mintyuk, V. B. Sposob postroeniya bazisa dlya resheniya kraevykh zadach v obyknovennykh proizvodnykh variatsionnymi metodami [Basis construction method for solving boundary value problems in ordinary derivatives by variational methods]. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii : sb. nauch. tr. Nats. aerokosm. un-ta im. N. E. Zhukovskogo «KhAI» [Open information and computer integrated technologies : scientific papers collection of Zhukovsky National Aerospace university]. Kharkiv, «KhAI» Publ., 2007, vol. 35, pp. 143-148.

Khalilov, S. A. Novye sistemy ortonormirovannykh mnogochlenov, nekotorye ikh svoistva i prilozheniya [New orthonormal polynomials systems, some of their properties and applications]. Prochnost' konstruktsii letatel'nykh apparatov: temat. sb. nauch. tr. [Strength of aircraft structures: thematic collection of scientific papers]. Kharkiv, «KhAI» Publ., 1978, vol. 5, pp. 46-56.

Abramowitz, Milton, Stegun, Irene Ann, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. United States Department of Commerce, National Bureau of Standards, New York, Dover Publications., 1983. 275 p.

Bernshtein, S. N. Sobranie sochinenii. Tom 1 – Konstruktivnaya teoriya funktsii (1905 – 1930 gg.) [Anthology. Volume 1 – Constructive theory of functions]. Moskow, «AN SSSR» Publ., 1952. 582 p.

Daugavet, I. K. O bystrote skhodimosti metoda Galerkina dlya obyknovennykh differentsial'nykh uravnenii [About convergence rate of the Galerkin method for ordinary differential equations]. «Izv. VUZov. Matematika» [University News mathematics], 1958, vol. 6, no. 5, pp. 158-165.

Vasidzu, K. Variatsionnye metody v teorii uprugosti i plastichnosti [Variational methods in elasticity and plasticity]. Moskow, «Mir» Publ., 1987. 542 p.

Khalilov, S. A., Mintyuk, V. B. Ploskii nelineinyi izgib balki. Vyvod zamknutoi sistemy uravnenii [Simple non-linear bending of a beam. Derivation of closed loop equations set]. Aviacijno-kosmicna tehnika i tehnologia - Aerospace technic and technology, 2011, vol. 78, no. 1, pp. 39-45.

Mintyuk, V. B. Issledovanie nelineinogo ploskogo izgiba balki [Researching nonlinear plane bending of a beam]. Aviacijno-kosmicna tehnika i tehnologia - Aerospace technic and technology, 2011, vol 80, no. 3, pp. 43-52.




DOI: https://doi.org/10.32620/aktt.2019.6.04