MATHEMATICAL MODELING OF ELECTRIC HEATING ENGINE ON START-UP
Abstract
Keywords
Full Text:
PDF (Русский)References
Fadeenkov, P. V. Optimizatsiya pereletov mezhdu nekomplanarnymi krugovymi orbitami s dvukhstupenchatym razgonnym blokom s khimicheskim i elektroreaktivnym dvigatelyami. [Optimization of flights between non-coplanar circular orbits with a two-stage accelerating unit with chemical and electrojet engines]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2007, no. 1, pp. 116-122.
Vorob'eva, I. A., Sheptun, A. D., Proektno-ballisticheskie issledovaniya po gruppovym zapuskam sputnikov v odnom puske rakety nositelya na raznesennye bazovye orbity. [Design and ballistic studies of group launches of satellites in one launch of a carrier rocket into spaced base orbits]. Nauka і tekhnіka Povіtryanikh Sil Zbroinikh Sil Ukraїni, 2014, no. 3(16), pp. 164-168.
Lillesand, T., Kiefer, R. W., Chipman, J. Remote sensing and image interpretation. 7th Edition, John Wiley & Sons Publ., 2015. 736 p.
Ovchinnikov, M. Yu. Malye mira sego [Small worlds]. Komp'yuterra, 2007, no. 15, pp. 37-43.
Pogudin, A. V., Gubin, S. V. Osobennosti ra-tsional'nogo upravleniya dvigatel'nykh ustanovok dlya formirovaniya sputnikovoi gruppirovki [Features of the rational control of propulsion systems for the formation of a satellite constellation] Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii, 2017, no. 78, pp. 74 – 82.
Pogudin, A. V. Matematicheskoe modelirova-nie elektronagrevnoi dvigatel'noi ustanovki v formirovanii mikro sputnikovoi gruppirovki [Mathematical modeling of electric heating propulsion system in the formation of micro satellite constellation] Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2018, no. 3/147, pp. 45 – 51.
Pogudin, A. V. Obosnovanie vybora sredy modelirovaniya elektropitaniya elektronagrevnogo dvigatelya malykh kosmicheskikh apparatov [Substantiation of the selection of the simulation environment for power supply of the electric heating engine of small space vehicles]. Vseukraїns'kaya naukovo-tekhnіchna konferentsіya “Іntegrovanі komp’yuternі tekhnologії v mashinobuduvannі ІKTM-2017”, 2017, vol. 1, pp. 220.
Krejci, D. Space propulsion technology for small spacecraft. Available at: https://dspace.mit.edu/handle/1721.1/114401 (accessed 05.08.2019).
Bezruchko, K. V., Nesterenko, S. Yu., Ogienko, S. A., Sinchenko, S. V., Skhemy energeticheskikh i dvigatel'nykh ustanovok dlya kosmicheskikh apparatov. Ucheb. posobie [Schemes of power and propulsion systems for spacecraft], Kharkov, KhAI, 2016. 180 p.
Fuentes-Perez, Francisco Juan. Differential Pressure Sensors for Underwater Speedometry in Variable Velocity and Acceleration Conditions. IEEE Journal of Oceanic Engineering, 2018, vol. 43, Iss. 2, pp. 418-426. DOI: 10.1109/JOE.2017.2767786.
Ruan, H., Hu, X., Sun, D. Simulation Design and Implementation of Thermal Control Subsystem for Satellite Simulator. 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), 18-20 June 2017. DOI: 10.1109/ICIEA.2017.8283032.
DOI: https://doi.org/10.32620/aktt.2019.5.01