METHOD FOR AUTOMATIC CLUSTERING OF REMOTE SENSING DATA
Abstract
Keywords
Full Text:
PDF (Русский)References
Fukunaga, K. Vvedenie v statisticheskuyu teoriyu raspoznavaniya obrazov [Introduction to statistical theory of pattern recognition]. Moscow, Nauka Publ., 1979. 368 p.
Aivazyan, S. A., Bukhshtaber, V. M., Enyu-kov, I. S., Meshalkin, L. D. Prikladnaya statistika: klassifikatsiya i snizhenie razmernosti [Applied Statistics: Classification and Dimension Reduction]. Moscow, Finansy i statistika Publ., 1989. 608 p.
He, W., Yu, R., Zheng, Y. and Jiang, T. Image Denoising Using Asymmetric Gaussian Mixture Models. Internat. Symposium in Sensing and Instrumentation in IoT Era (ISSI), Shanghai, 2018, pp. 1-4. doi: 10.1109/ISSI.2018.8538279.
Sun, J., Zhao, Y., Wang, S. Image Compression Using GMM Model Optimization. IEEE Proc. Internat. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, 2019, pp. 1797-1801. doi: 10.1109/ICASSP.2019.8683784.
Yang, G., Li, H., Yang, W., Fu, K., Celik, T. and Emery, W. J. Variational Bayesian Change Detection of Remote Sensing Images Based on Spatially Variant Gaussian Mixture Model and Separability Criterion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, vol. 12, no. 3, pp. 849-861. doi: 10.1109/JSTARS.2019.2896233.
Bouhlel, N., Méric, S. Unsupervised Segmentation of Multilook Polarimetric Synthetic Aperture Radar Images. IEEE Transactions on Geoscience and Remote Sensing, 2019, pp. 1-15. doi: 10.1109/TGRS. 2019.2904401.
Shahin, I., Nassif, A. B. and Hamsa, S. Emotion Recognition Using Hybrid Gaussian Mixture Model and Deep Neural Network. IEEE Access, 2019, vol. 7, pp. 26777-26787. doi: 10.1109/ACCESS.2019. 2901352.
Hollaus, F., Diem, M. and Sablatnig, R. MultiSpectral Image Binarization using GMMs. 16th Internat. Conf. on Frontiers in Handwriting Recognition (ICFHR), Niagara Falls, NY, 2018, pp. 570-575. doi: 10.1109/ICFHR-2018.2018.00105.
Popov, A. V., Pogrebnyak, O., Brashevan, A. N. Image clustering algorithm using polynormal distribution. Proc. of SPIE Mathematical Methods in Pattern and Image Analysis, 2005, vol. 5916, pp. 1-9.
Vasil'eva, I. K. Iteratsionnyi metod otsenki parametrov smesi funktsii Gaussa v zadachakh opisaniya dannykh nablyudenii [An iterative method for estimating the parameters of a mixture of Gauss functions in problems of describing observational data]. Radioelektronni i komp’juterni systemy – Radioelectronic and computer systems, 2015, no. 3 (73), pp. 70-76. (In Russian).
Vasil'eva, I., Popov, А. Multicomponent Model of Objects Attributive Signatures on Color Pictures. Proc. Internat. Scientific-Practical Conf. on Problems of Infocommunications. Science and Technology, Kharkiv, Ukraine, 9-12 Oct. 2018, pp. 281-284. doi: 10.1109/INFOCOMMST.2018.8632110.
DOI: https://doi.org/10.32620/aktt.2019.3.08