EQUATIONS OF AVERAGE ISOBARIC HEAT CAPACITY OF AIR AND COMBUSTION GASES WITH INFLUENCE OF PRESSURE AND EFFECT OF THERMAL DISSOCIATION

Maya Vladimirovna Ambrozhevich, Mikhail Anatol'evich Shevchenko

Abstract


All properties of thermomechanical systems working substance are two-parameter that is determined by two parameters, the most often they are temperature and pressure which are easily measured by experiment. Representing the isobaric heat capacity as a function of temperature cp = f(T) become a thing of the past. Analytical and tabular ways are used to represent dependencies as a function of temperature and pressure. The tabular method is convenient for single calculations, but the analytical one is more convenient for a series of calculations. The advantages of an analytical description in comparison with a tabular one are obvious, namely, compactness of information storage without reference to node points, the ability to integrate and differentiate, dependencies can be embedded directly in the program body and don’t require special subroutines to access to the tables. Developers of the programs for calculating thermophysical properties, as a rule, use functional dependencies which may have a different appearance for temperature and pressure intervals of the same substance. This is explained by the fact that in the region close to the saturation curve, there is a steep change in all the thermophysical properties of substances including the isobaric heat capacity. In thermogasdynamic calculations of heat machines, the main physical parameter of the working fluid is its heat capacity, both true and average. The article presents the analytical dependencies of the average specific isobaric heat capacities of the main components of air and combustion products of hydrocarbon fuels which are united throughout the specified range of pressures and temperatures (nitrogen: p = 1 ... 200 bar, T = 150 ... 2870 K, oxygen: p = 1 ... 200 bar, T = 210 ... 2870 K, argon: p = 1 ... 200 bar, T = 190 ... 1300 K, the water vapor: p = 0,1 ... 200 bar, T = 700 ... 2600 K, carbon dioxide: p = 1 ... 200 bar, T = 390 ... 2600 K). The analytical dependencies were derived on the basis of previously obtained analytical expressions for the specific isobaric heat capacities of these gases. The average specific isobaric heat capacities of gases are also functions of temperature and pressure cp = f(T, P) and take into account the effect of thermal dissociation. Formulas for average specific isobaric heat capacities are obtained by integrating expressions for specific isobaric heat capacities. Verification of the obtained dependencies for different temperature ranges was done.

Keywords


average isobaric heat capacity; combustion products of heat machines; air; thermal dissociation; influence of pressure

Full Text:

PDF

References


Nechaev, Yu. N., Fedorov, R. M., Kotovskii, V. N., Polev, A. S. Teoriya aviatsionnykh dvigatelei [Theory of Aviation Engines]. Moscow, VVIA im. prof. N.E. Zhukovskogo Publ., 2006. 448 p.

Kotowicz, J., Job, M., Brzęczek, M., Nawrat, K., Mędrych, J. The methodology of the gas turbine efficient of the gas turbine efficient calculation. Archives of thermodynamics, 2016, vol. 37(2016), no. 4, pp. 19 – 35.

Kislov, O. V., Shevchenko, M. A. Issledovanie vliyaniya energoobmena mezhdu konturami na udel'nye parametry TRDD [Investigation of Influence of Energy Exchange between Turbofan Engine Channels on its Specific Parameters]. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii [Open Information and Computer Integrated Technologies], 2017, no 76, pp. 126-134.

Isaev, S. I. Kurs khimicheskoi termodinamiki [Course of chemical thermodynamics]. Moscow, Vysshaya Shkola Publ., 1986. 272 p.

Il'ichev, Ya. T. Termodinamicheskii raschet vozdushno-reaktivnykh dvigatelei [Thermodynamic calculation of turbojet engines]. Moscow, Tsentral'nyi institut aviatsionnogo motorostroeniya Publ., 1975. 126 p.

Chernobaev, D. O., Zhivotovskii, A. G. Teploemkost' gazov [Heat Capacity]. Kiev, AnUSSR Publ., 1938. 84 p.

Skuratov, S. M., Kolesov, V. P., Vorob'ev, A. F. Termokhimiya. Chast' II [Thermochemistry. Part II]. Moscow, MGU Publ., 1966. 434 p.

Glushko, V. P., Alemasov, V. E., Vanicheva, A. P., Grishina, S. D., Il'inskogo, V. A., Dregalina, A. F., Tishina, A. P., Illarionova, N. V. Termodinamicheskie i teplofizicheskie svoistva produktov sgoraniya [Thermodynamic and thermophysical properties of combustion products]. Moscow, AN SSSR Publ., 1971, vol. 1. 267 p.

Vukalovich, M. P., Kirillin, V. A., Remizov, S. A., Siletskii, V. S., Timofeev, V. N. Termodinamicheskie svoistva gazov [Thermodynamic properties of gases]. Leningrad, Mashgiz Publ., 1953. 376 p.

Rivkin, S. L. Termodinamicheskie svoistva gazov [Thermodynamic properties of gases]. Moscow, Energoatomizdat Publ., 1987. 288 p.

Ambrozhevich, M. V., Shevchenko, M. A. Analiticheskoe opredelenie udel'noi izobarnoi teploemkosti produktov sgoraniya s uchetom vliyaniya davleniya i effekta termicheskoi dissotsiatsii [Analytical Determination of Isobaric Heat Capacity of Air and Combustion Gases with Influence of Pressure and Effect of Thermal Dissociation]. Aviacijno-kosmicna tehnika i tehnologia - Aerospace technic and technology, 2019. no. 1/158, pp. 4-17.

Konstantinos, G. K., Vishal, S., Ogaji, O., Stephen, T., Pilidis, P., Singh, R., Kalfas, I. A. Thermo-fluid modelling for gas turbines - part I: Theoretical foundation and uncertainty analysis. Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air, GT2009-60092, Orlando, Florida, USA, 2009, pp. 467 – 481.

Boldyrev, O. I., Goryunov, I. M. Vliyanie termicheskoi dissotsiatsii produktov sgoraniya uglevodorodnogo topliva na parametry rabochego protsessa perspektivnykh gazoturbinnykh dvigatelei [Influence of thermal dissociation of hydrocarbonic fuel combustionproductson parameters of working process perspective gas-turbineengines]. Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education], 2012, no. 1. Available at: https://www.science-education.ru/pdf/2012/1/15.pdf (Accessed 8.01.2019).

Pitot, J., Reuter, H. Quantitative Impact of Thermodynamic Property Model Selection on Gas Turbine Performance Prediction. R & D Journal of the South African Institution of Mechanical Engineering, 2014. vol. 30, pp. 55 – 67.

Bücker, D., Span, R., Wagner, W. Thermodynamic Property Models for Moist Air and Combustion Gases. ASME, Journal of Engineering for Gas Turbine and Power, 2003, vol. 125, no 1, pp. 374 – 384.

Aleksandrov, A. A., Orlov, K. A., Ochkov, V. F. Web-versiya spravochnika Teplofizicheskie svoistva rabochikh veshchestv teplo-energetiki [Thermophysical properties of working substances of heat power engineering]. Available at: http://twt.mpei.ac.ru/rbtpp/ (Accessed 8.01.2019).

NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP) : Version 10. Available at: https://www.nist.gov/srd/refprop (Accessed 03.03.2019).

Vargaftik, N. B. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei [Handbook of thermophysical properties of gases and liquids]. Moscow, Nauka, Publ., 1972. 720 p.

Nikol'skii, B. P., Grigorov, O. N., Pozin, M. E., Porai-Koshits, B. A., Rabinovich, V. A., Rachinskii, F. Yu., Romankov, P. G., Fridrikhsberg, D. A. Spravochnik khimika [Handbook of the chemist]. Moscow, Khimiya Publ., 1966, vol. 1. 1072 p.




DOI: https://doi.org/10.32620/aktt.2019.2.02