CALCULATION OF THE AERODYNAMIC CHARACTERISTICS OF SUPERSONIC AXISYMMETRIC FEATHERED BODIES OF ROTATION

Олександр Миколайович Шийко, Анатолій Михайлович Павлюченко, Андрій Вікторович Скорик, Олексій Анатолійович Обухов, Ігор Володимирович Коплик

Abstract


The subject of research in the article is the aerodynamic forces arising from the flight of supersonic feathered rotation bodies such as unguided rockets. The aim of the work is to develop a method for calculating the aerodynamic coefficients of the resultant forces and moments of supersonic feathered bodies of revolution such as unguided missiles when flown around at an angle of attack with pre-, trans- and supersonic speeds according to drawings of their external contours. Tasks: using modern software systems and flight experiments, develop a method for calculating the distribution of normal and tangential stresses over the surface of a supersonic feathered body of rotation, their equivalent and aerodynamic coefficients at up-, trans- and supersonic flow velocities at an angle of attack. The applied methods are the numerical solution of the Navier-Stokes equations, the use of two-parameter differential models of near-wall turbulent viscosity, verification of the methodology by comparing the results of calculations with the data of flight experiments and known data on the aerodynamic resistance of the object of research. The following results were obtained. Based on the numerical solution of the Navier-Stokes equations in the ANSYS CFX software package using the γ-ReΘt SST–model of Menter’s near-wall turbulence, a method is developed for calculating the aerodynamic characteristics of supersonic axially symmetric rotation bodies of uncontrollable missiles according to drawings of the external contours in the presence of a counter-flow angle. Using the developed technique it is possible to calculate the aerodynamic coefficients of friction resistance, pressure resistance and bottom resistance at sub-, trans- and supersonic speeds. Characteristics include the coefficients of the longitudinal aerodynamic force, transverse aerodynamic force, aerodynamic stabilizing moment and the coordinate of the center of pressure of the feathered body of rotation. For the calculations, were applied the external contours of the unguided missile M–21OФ. Calculations were performed for the counter-flow Mach numbers within0,1 £ M £ 2,5. The aerodynamic coefficients were calculated as functions of the Mach number M. In order to determine the Reynolds number of the beginning of the laminar-turbulent transition in the boundary layer for this type of aircraft the characteristics of the friction resistance were calculated and compared with the flight data for two samples of research aerophysical complexes. Conclusions. The scientific novelty of the results is as follows: a pilot test was created and involved the results of flight experiments on Reynolds numbers of the start of a laminar-turbulent transition in the boundary layers of a method for calculating the aerodynamic drag coefficients of supersonic axially rotated bodies of rotation like uncontrollable missiles according to the drawings of their external contours during turning angle of attack based on the numerical solution of the Reynolds-averaged Navier-Stokes equations in the framework of the programme product ANSYS CFX using γ-ReΘt SST–Menter turbulence model. Verification of the calculation results was carried out on the basis of their comparison with the known values of the aerodynamic characteristics of the object of research with the axisymmetric flow.

Keywords


axisymmetric feathered body of rotation; sub-, trans- and supersonic flow rates; friction resistance; pressure resistance; bottom resistance; longitudinal aerodynamic force coefficient; transverse aerodynamic force coefficient

References


Krasnov, N. F. Aerodinamika. Chast II. Metody aerodinamicheskogo rascheta [Aerodynamics. Part II. Methods of aerodynamic calculation]. Moscow, Librokom Pabl., 2015. 416 р.

Dmitrievskij, A. A. Vneshnyaya ballistika [External ballistics]. Moscow, Mashinostroenie Pabl., 2005. 582 p.

Lipnickij, Yu. M., Krasilnikov A. V., Pokrovskij A. N., Shmanenkov V. N. Nestacionarnaya aerodinamika ballisticheskogo poleta [Nonstationary aerodynamics of ballistic flight]. Moscow, Fizmatlit Pabl., 2003. 176 p.

Leont'ev, A. I. Teoriya teplomassoobmena [Theory of a heatmass exchange]. Moscow, Vysshaya shkola Pabl., 1979. 495 p.

Kutateladze, S. S., Leont'ev, A. I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe [Heatmass exchange and friction in turbulent boundary layer]. Moscow, Energiya Publ., 1985. 319 p.

Chernyj, G. G. Gazovaya dinamika [Gas dynamics]. Moscow, Nauka. Gl. Red. Fiz.-mat. Lit. Pabl., 1988. 424 p.

Hanbook of supersonic aerodinamics, Section 8, Bodies of Revolution, NАVWEPS REPORT 1488, vol. 3,. U. S. Gavernment Printing Office, Washington, Oktober, 1961. 335 p.

Pavlyuchenko, A. M., Shyiko, O. M. Do problemy rozrakhunku teploobminu i oporu tertya nadzvukovykh osesymetrychnykh ob"yektiv v umovakh pra-tsyuyuchykh dvyhuniv RDTP za nayavnosti v prystinnomu prykordonnomu shari laminarno-turbulentnoho perekhodu, efektu styslovosti i neizotermichnosti [The problem of calculation of heat transfer and friction resistance of supersonic axisymmetric objects under the solid propelland engines operating in the presence of parietall boundary layer laminar-turbulent transition and non-isothermal compressibiliti]. Systemy ozbroyennya i viys'kova tekhnika – Systems of Arms and Military Equipment, 2013, vol. 4 (36), pp. 107-120.

Pavlyuchenko, A. M. O. M. Shyiko, O. M. Kompleksnyy metod rozrakhunku oporu tertya i teploobminu na poverkhni l'otnykh osesymetrychnykh ob"yektiv pry pol'oti po trayektoriyi z nayavnistyu v prystinnomu prykordonnomu shari neizotermichnosti, styslyvosti, laminarno-turbulentnoho perekhodu ta relaminarizatsiyi [Complex method for calculating the friction resistance and thermal refraction on the surface of flight axisymmetric objects on flight by trajectory with availability in the wall boundary layer non-isothermal, compressive, laminar-turbulent transition and relainarization]. Aviacijno-kosmicna tehnika i tehnologia - Aerospace technic and technology, 2018, no. 1(54), pp. 4-28.

Shyiko, O. M., Polenicya, P. V., Koplik, I. V. Rozraxunok skladovoї donnogo oporu aerodinamіchnogo koefіcієntu lobovogo oporu artilerіjs'kogo snaryada [Calculation of a component of ground resistance of aerodynamic drag coefficient of an artillery shell]. Artillerijskoe i strelkovoe vooruzhenie, Kiev, Artillerijskoe vooruzhenie Pabl., 2010, no. 2, pp. 63-64.

Shyiko, O. M., Polenicya, P. V., Koplyk, I. V., Avdeeva, E. N., Dumchikov, A. A. Skladova oporu tysku aerodynamichnoho koefitsiyentu lobovoho oporu artyleriys'koho snaryada [Component of pressure of axial-force coefficient of an artillery shell]. Systemy ozbroyennya i viys'kova tekhnika – Systems of Arms and Military Equipment, 2010, no.1(21), pp. 108-117.

Shyiko, O. M. , Polenicya, P. V. Sergієv, S. V. Rozrakhunkove vyznachennya deryvatsiyi artyleriys'kykh snaryadiv [The calculated definition of the derivation of artillery shells]. Ozbroyennya i viys'kova tekhnika – Weapons and military equipment, no. 1, 2018, pp. 21-25.

Pavlyuchenko, A. M., Shyiko, А. N., Skorik, A. V. Rezul'taty issledovaniya raspredeleniya staticheskogo davleniya na golovnoj chasti raketnogo ae'rofizicheskogo kompleksa tipa M-100 na osnove chislennogo metoda rascheta i letnogo e'ksperimenta dlya chisel Maxa poleta 1.4М4.2, Rejnol'dsa ReL,≤108, uskoreniya a≤32g v usloviyax ae'rodinamicheskogo nagreva [Results of the research of static pressure distribution on the head part missile M-100 aerophysical systems on the basis of the numerical method of calculation and flight experiment for mach numbers 1,4М4,2, Reynolds Rel,≤108, acceleration a ≤32g in the conditions of aerodynamic heating]. Aviacijno-kosmicna tehnika i tehnologia - Aerospace technic and technology, no. 3(138), 2017, pp. 19–49.

Kutler, P. Perspektivy razvitiya teoreticheskoy i prikladnoy vychislitel'noy aerodinamiki [Prospects of development of theoretical and applied computing aerodynamics]. Aerokosmicheskaya tekhnika, 1985, vol. 3, no. 8, pp. 11-29.

Prixod'ko, A. A. Sovremennye texnologii matematicheskogo modelirovaniya v ae'rogidrodinamike i teplomassoobmene [Modern technologies of mathematical modeling in aerohydrodynamics and a heatmass exchange]. Texnicheskaya mexanika – Technical mechanics, Dnepropetrovsk, DGU Pabl., 2009, no. 9, pp. 73–85.

Prihod'ko, A. A., Arsenyuk, M. S., Polubotok, M. A. Primenenie chislennogo modelirovaniya dlya opredeleniya aehrodinamicheskih harakteristik letatel'nyh apparatov, transportnyh sredstv i vetroehnergeticheskih ustanovok [The use of numerical simulation to determine the aerodynamic characteristics of aircraft, vehicles and wind power plants]. Kosmicheskaya tekhnika. Raketnoe vooruzhenie, Dnepropetrovsk, 2015, vol. 2 (109), pp. 77–82

Menter, F. R. Two-Equation Eddy-Viscosity Turbulence Models for Enginiring Applications. AIAA Journ., 1994, vol. 32, no. 8, pp. 1598–1605.

Vozhdaev, V. V. Chislennoe modelirovanie laminarno-turbulentnogo perekhoda na profile kryla, vypolnennoe v programmnom komplekse ANSYS CFX [Numerical simulation of laminar-turbulent transition on the wing profile, performed in the ANSYS CFX software package]. SAPR i grafika, Moscow, Komp'yuter Press Pabl., 2011, no. 2, pp. 66-67.

Matyushenko, A. A., Garbaruk, A. V., Smirnov, P. E., Menter, F. R. Chislennoe issledovanie vliyaniya laminarno-turbulentnogo perekhoda na harakteristiki aehrodinamicheskih profilej [Numerical study of the influence of the laminar-turbulent transition on the characteristics of aerodynamic profiles]. Teplovye processy v tekhnike, 2015, vol. 7, no. 8, pp. 338-343.

Rumsey, C. L. Exploring a Method for Improving Turbulent Separated-Flow Predictions with k-ω Models. NASA/TM–2009–215952, Langley Research Center, Hampton, Virginia, 2009. 62 p.

Lampart, P., Swirydczuk, J., Gardzilewicz, A., Yershov, S., Rusanov, A. The Comparison of Performance of the Menter Shear Stress Transport and Baldwin-Lomax Models with Respect to CFD Prediction of Losses in HP Axial Turbine Stages. Technologies for Fluid/Thermal/Structural/Chemical Systems with Industrial Applications, ASME, 2001, vol. 424–2, pp. 1–12.

Chupin, P. V., Karelin, D. V., Starkov, R. Y., Shmotin, Y. N., Ershov, S. V., Rusanov, A. V. Optimi-zaciya stupeni turbiny GTD s ispol'zovaniem kom-pleksov programm FlowER-Optimus i CFX-TASCflow [Optimization of the GTE turbine stage using the FlowER-Optimus and CFX-TASCflow programs] Sovershenstvovanie turboustanovok metodami matematicheskogo i fizicheskogo modelirovaniya: Sb. nauchn. trudov. Kharkov, In-t problem mashinostroeniya NAN Ukrainy Publ., 2003, vol. 1, pp. 193-197.

Kalinkevich, N. V., Skorik, A. V. Flow and perfomence investigation of the specially designet channel diffuser of centrifugal compressor Proceedings of the 8-th International Conference on Compressors and their Systems: 9-10 September 2013, 2013, pp. 489–500.

Smirnov, A.V., Skorik, A. V., Nefedov, A. N., Zinchenko, I. N. Issledovanie techeniya gaza v vysokoehffektivnom centrobezhnom kompressore gazoperekachivayushchego agregata novogo pokoleniya [Investigation of gas flow in a highly efficient centrifugal compressor of a new generation gaspumping unit]. Kompressornoe i ehnergeticheskoe mashinostroenie, 2015, no. 2(40), pp. 16 – 21.

Hart, Roger G. Effects of Stabilizing Fins and a Rear-Support Sting on the Base Pressures of a Body of Revolution in Free Flight at Mach Numbers from 0.7 to 1.3. NACA RM L52E06. Langley Aeronautical Laboratory Langley Field, 1952. 19 p.

Sbornik tablic dlya resheniya zadach po vne-shnej ballistike [Collection of tables for solving problems of external ballistics]. Penza, Vysshee artillerijskoe inzhenernoe uchilishche Publ., 1971. 72 p.

Tablicy strel'by oskolochno-fugasnymi reaktivnymi snaryadami M-21OФ [Tables of firing by fragmental and demolition rockets of M-21OФ]. Moscow, Voennoe izdatel'stvo ministerstva oborony SSSR Publ., 1975. 96 p.




DOI: https://doi.org/10.32620/aktt.2019.2.01