ANALYTICAL DETERMINATION OF ISOBARIC HEAT CAPACITY OF AIR AND COMBUSTION GASES WITH INFLUENCE OF PRESSURE AND EFFECT OF THERMAL DISSOCIATION

Майя Владимировна Амброжевич, Михаил Анатольевич Шевченко

Abstract


The basic thermophysical parameter of the working fluid of all thermal machines without exception is isobaric heat capacity (specific heat at constant pressure). Traditionally, in engineering calculations of isobaric heat capacity are determined as a tabular value for average heat capacities, or approximated with a square parabola within a given temperature range. Isobaric heat capacity is a function of temperature only. At the current level of GTE development, when the overall compressor pressure ratio is already up to 50 and the tendency of its increase remains it is unacceptable to neglect the pressure. However, the turbine inlet gas temperature also rises that will inevitably lead to the effect of thermal dissociation in the combustion products of the gas turbine engine. The studies of the thermal dissociation effect influence on the parameters of the working process of advanced GTE show that this ignoring leads to computational errors. At the present time, there are mathematical models that allow calculating the isobaric heat capacity as a function of temperature and pressure (taking into account the effect of thermal dissociation) but they are laborious, which is not always practical when estimate calculations performing and program algorithms writing. Consequently, the authors posed the problem of obtaining of simple analytic relationships that make it possible to calculate the isobaric heat capacity as a function of temperature and pressure (taking into account the effect of thermal dissociation). Based on the tabular data for the main components of the gas turbine combustion products within a given range of pressures and temperatures (nitrogen: p = 1 ... 200 bar, T = 150 ... 2870 K, oxygen: p = 1 ... 200 bar, T = 210 ... 2870 K, argon: p = 1 ... 200 bar, T = 190 ... 1300 K, the water vapor: p = 0.1 ... 200 bar, T = 640 ... 1250 K and p = 0.1 ... 400 bar and T = 1250 ... 3200 K, carbon dioxide: p = 1 ... 200 bar, T = 390 ... 2600 K), analytical dependencies were obtained for the calculation of isobaric heat capacities as functions of temperature and pressure taking into account the effect of thermal dissociation. The results of the calculations were compared with tabulated experimental data.

Keywords


isobaric heat capacity (specific heat at constant pressure); combustion products of GTE; thermal dissociation; influence of pressure; conversion of two-dimensional arrays in an analytic function of two variables

References


Apostolidis, А., Sampath, S., Laskaridis, P., Singh, R. WebEngine: A Web-Based Gas Turbine Performance Simulation Tool. Proceedings of ASME Turbo Expo 2013, GT2013-95296. Available at: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1776319 (Accessed 17.01.2019).

Huadong, Y., Hong, X. The New Performance Calculation Method of Fouled Axial Flow Compressor. The Scientific World Journal, 2014. Available at: http://dx.doi.org/10.1155/2014/906151 (Accessed 17.01.2019).

Hanachi, H. Gas Turbine Engine Performance Estimation and Prediction. Thesis for: PhD, 2015. Available at: https://www.researchgate.net/publication/282329114_Gas_Turbine_Engine_Performance_Estimation_and_Prediction (Accessed 17.01.2019).

Ambrozhevich, A. V., Lar'kov, S. N., Migalin, K. V. Model' mnogorezhimnogo goreniya v teplovykh mashinakh [Model of multi regime combustion on the heat mashines]. Aviacijno-kosmicna tehnika i tehnologia - Aerospace technic and technology, 2010. no. 5/72, pp. 50–58.

Ambrozhevich, M. V., Kornev, A. V., Sereda, V. A. Maloresursnaya podmodel' turboreaktivnogo dvigatelya [A low resource submodel of turbojet engine]. Aviacijno-kosmicna tehnika i tehnologia - Aerospace technic and technology, 2016, no. 1/128, pp. 44-52.

Kochergin, S. M., Dobren'kov, G. A., Nikulin, V. N., Kondrat'ev S. N. Kratkii kurs fizicheskoi khimii [ Short course of physical chemistry]. Moscow, Vysshaya Shkola Publ., 1978. 312 p.

Demenchenok, V. P., Druzhinin, L. N., Parkhomov, A. L., Sosunov, V. A., Tskhovrebov, M. M., Shlyakhtenko, S. M., El'perina, A. S. Teoriya dvukhkonturnykh turboreaktivnykh dvigatelei [Theory of turbofan engines]. Moscow, Mashinostroenie Publ., 1979. 432 p.

Yankin, V. I. Sistema programm dlya rascheta kharakteristik VRD na ETsVM. [System of programs for calculating the characteristics of turbojet engine with a computer]. Moscow, Mashinostroenie Publ., 1976. 168 p.

Rivkin, S. L. Termodinamicheskie svoistva gazov [Thermodynamic properties of gases]. Moscow, Energoatomizdat Publ., 1987. 288 p.

Isaev, S. I. Kurs khimicheskoi termodinamiki [Course of chemical thermodynamics]. Moscow, Vysshaya Shkola Publ., 1986. 272 p.

Il'ichev, Ya. T. Termodinamicheskii raschet vozdushno-reaktivnykh dvigatelei [Thermodynamic calculation of turbojet engines]. Moscow, Tsentral'nyi institut aviatsionnogo motorostroeniya Publ, 1975. 126 p.

Ambrozhevich, M. V., Shevchenko, M. A. Analiticheskoe opredelenie udel'noi izobarnoi teploemkosti produktov sgoraniya [Analytical determination of the specific isobaric heat capacity of combustion products]. «Іntegrovanі komp'yuternі tekhnologії v mashinobuduvannі ІKTM 2017». tez. dop. Vseukr. nauk. – tekhn. konf., 31 oktyabrya – 3 noyabrya 2017 g. [Integrated Computer Technologies in Mechanical Engineering ICTME 2017: Thesis. add Allukr sciences - Tech. Conf., October 31 - November 3, 2017]. Khar'kov, 2017, vol. 1, рр. 124.

Ambrozhevich, M. V., Shevchenko, M. A. Vliyanie davleniya i effekta termicheskoi dissotsiatsii na udel'nuyu izobarnuyu teploemkost' produktov sgoraniya [Effect of pressure and thermal dissociation on the specific isobaric heat capacity of combustion products]. Informatsiyni tekhnolohiyi: nauka, tekhnika, tekhnolohiya, osvita, zdorov"ya : tez. dop. XXVI mizhn. nauk. – prakt. konf. MicroCAD-2018-2018, 16 – 18 travnya 2018 r.: u 4 ch. Ch. I [Information technologies: science, engineering, technology, education, health: XXVI international scientific-practical conference MicroCAD-2018, May 16 - 18, 2018 The four parts, P. 1.] Khar'kov, 2018, рp. 226.

Boldyrev, O. I., Goryunov, I. M. Vliyanie termicheskoi dissotsiatsii produktov sgoraniya uglevodorodnogo topliva na parametry rabochego protsessa perspektivnykh gazoturbinnykh dvigatelei [Influence of thermal dissociation of hydrocarbonic fuel combustionproductson parameters of working process perspective gas-turbineengines]. Sovremennye problemy nauki i obrazovaniya – Modern problems of science and education, 2012, no. 1. Available at: https://www.science-education.ru/pdf/2012/1/15.pdf (Accessed 8.01.2019).

Boldyrev, O. I. Metodika rascheta ravnovesnogo sostoyaniya gomogennoi smesi produktov sgoraniya uglevodorodnogo topliva v kamerakh sgoraniya GTD [Techniques for calculating the equilibrium state of a homogeneous mixture of combustion products of hydrocarbon fuel in combustion chambers of GTE]. Vestnik UGATU, 2012, vol. 16, no. 2 (47), pp. 106–112.

Konstantinos, G. K., Ogaji S. Vishal, Stephen, O.T., Pericles, Pilidis, Anestis, Singh Riti, Kalfas I. Thermo-fluid modelling for gas turbines - part I: theoretical foundation and uncertainty analysis. Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air, GT2009-60092. Available at: https://www.researchgate.net/publication/259009623_Thermo-Fluid_Modelling_for_Gas_Turbines-Part_I_Theoretical_Foundation_and_Uncertainty_Analysis. (Accessed 8.01.2019).

Bücker, D., Span, R., Wagner, W. Thermodynamic Property Models for Moist Air and Combustion Gases. ASME, Journal of Engineering for Gas Turbine and Power, 2003, vol. 125, no 1, pp. 374 – 384.

Alemasov, V. E., Dregalin, A. F., Tishin, A. P. and Termodinamicheskie i teplofizicheskie svoistva produktov sgoraniya [Thermodynamic and thermophysical properties of combustion products]. Moscow, AN SSSR Publ., 1971, vol. 1. 267 p.

Sethi, V., Diara, F., Atabak, S., Jackson, A., Bala, A., Pilidis, P. Advanced Modelling of Fluid Thermodynamic Properties for Gas Turbine Performance Simulation. ASME TURBO EXPO 2008, GT2008-51126, Berlin, Germany, 2008, pp. 173 – 183.

Aleksandrov, A. A., Orlov, K.A., Ochkov, V. F. Web-versiya spravochnika Teplofizicheskie svoistva rabochikh veshchestv teplo-energetiki [Thermophysical properties of working substances of heat power engineering]. Available at: http://twt.mpei.ac.ru/rbtpp/ (Accessed 8.01.2019).

Vargaftik, N. B. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei [Handbook of thermophysical properties of gases and liquids]. Moscow, Nauka Publ., 1972. 720 p.

Nikol'skii, B. P., Grigorov, O. N., Pozin, M. E., Porai-Koshits, B. A., Rabinovich, V. A., Rachinskii, F. Yu., Romankov, P. G., Fridrikhsberg, D. A. Spravochnik khimika [Handbook of the chemist]. Moscow, Khimiya Publ., 1966, vol. 1. 1072 p.




DOI: https://doi.org/10.32620/aktt.2019.1.01