INCREASING DURABILITY AND ROBUSTNESS OF PLANE WHEEL HUBS BY STRENGTHENING TREATMENT

Іван Семенович Афтаназів, Лілія Іванівна Шевчук, Орися Іванівна Строган, Леся Романівна Струтинська

Abstract


Technology, equipment, and results of stand tests of plane wheel hubs and flanges strengthened by surface plastic deformation are described. The new method suggested by the authors is called vibrational-centrifugal strengthening treatment. It belongs to the method group of dynamic strengthening of revolutional shape parts. It is based on impact interaction of the part processed with a massive tool which is rolled over the strengthened surface of the part when under vibration. Moreover, the impact contact between the part and the tool occurs through a small number of deformable bodies. This provides formation of compressive residual stress in the contact places in the part material. For magnesium wheel hubs (alloy ML-12) residual compressive stress is within 110 MPa, for aluminium ones (alloy AK6) it is within 250 MPa. The degree of strengthening of outer zone material for magnesium wheel hubs is 45...59 % with surface micro-hardness increasing up to 1150 N/m2 and the thickness of the strengthened layer being   0.9...1.0 mm. When strengthening aluminium wheel hubs and flanges, the thickness of the strengthened layer is to be 0.6...0.9 mm with a degree of cold work being 25...30 %. Fatigue studies of a party of KT-141 type wheel hubs strengthened by the method (magnesium alloy MT-12) demonstrated their service life increasing up to 1000 take-offs and landings at the safety coefficient of n = 3.5. The lifetime of this type of wheel hubs strengthened by roller burnishing did not exceed 750 take-offs and landings; for unstrengthened ones, it made 500 take-offs and landings at lower values of the safety coefficient. Strengthening the wheel hub web KT-150K (aluminium alloy AK6) increases their lifetime by 28...30 % on average. Apart from plane wheel hubs and flanges, the method of vibrational-centrifugal strengthening treatment can be applied for increasing the lifespan of various parts of chassis components of circular section, for strengthening nonferrous metal webs of car wheels, radius blends and steel shaft journals etc.

Keywords


hub; flange; wheel; plane; magnesium alloy; aluminium alloy; strengthening; surface plastic deformation; residual stress; strengthening thickness

References


Stepnov, M. N., Borodin, N. A., Khazanov, I. I. Jeffektivnost' uprochnenija legkih splavov poverhnostnym naklepom [Efficiency of hardening of light alloys by superficial slander]. Mashinovedenie – Machine Science, 1968, no. 3, pp. 18-23.

Stepnov, M. N., Giacintov, E. V. Ustalost' legkih konstrukcionnyh splavov [Fatigue of light structural alloys]. Moscow, Mechanical engineering Publ., 1973. 256 p.

Sirotinsky, B. S. Ob ustalostnoj prochnosti i dolgovechnosti lopastej vertoletov [On fatigue strength and durability of helicopter blades]. In the book: Strength and durability of aviation constructions, Kiev, BOOK Publ., 1965. 214 p.

Khazanov, I. I., Mozalev, V. V., Kokonin, S. S. and others. Jekspluatacionnaja nadezhnost' aviacionnyh koles [Operational reliability of aviation wheels]. Moscow, Transport Publ., 1975. 224 p.

Kudryavtsev, I. V., Minkov, Ya. L., Dvornikova, E. E. Povyshenie prochnosti i dolgovechnosti krupnyh detalej mashin poverhnostnym naklepom [Increase of durability and durability of large parts of machines by superficial slander]. InformTyazhmash, Moscow, Transport Publ., 1975, no. 12-69-18. 145 p.

Kravchuk, V. С. Issledovanie i raschetnaja ocenka vynoslivosti detalej s poverhnostnym uprochneniem. Avtoref. dis. … kand. tehn. nauk [Investigation and calculation of endurance of parts with surface hardening. Abstract. dis. ... сand. tech. of sciences]. Odessa, 1978. 175 p.

Papshev, D. D. Otdelochno-uprochnjajushhaja obrabotka stalej poverhnosnym plasticheskim deformirovaniem [Finishing-strengthening treatment of steels by surface plastic deformation]: In the book. Dimensional and finishing machining of machine parts by plastic deformation, Moscow, Mechanical engineering Publ., 1965, pp. 29-37.

Petrosov, V. V. Gidrodrobestrujnoe uprochnenie detalej i instrumenta [Hydroblasting hardening of parts and tools]. Moscow, Mechanical engineering Publ., 1977. 199 p.

Povidailo, V. A., Aftanaziv, I. S. Poverhnostnoe uprochnenie barabanov aviacionnyh koles vibracionno-centorobezhnoj obrabotkoj [Surface hardening of aviation wheel drums with vibrating-centro-processing]: In the book Progressive finishing-hardening treatment. Rostov-on-Don, RISCHM Publ., 1982, pp. 52-57.

Aftanaziv, I. S. Optimizacija parametrov vibracionno-centrobezhnoj uprochnjajushhej obrabotki barabanov aviacionnyh koles [Optimization of parameters of vibration-centrifugal hardening of aviation wheel drums]. Bulletin of the Lviv Polytechnic Institute "Technology of Mechanical Engineering and Dynamic Strength of Machines", Lvov, Higher school bublishing Lvov un-te Publ., 1981, no. 162, pp. 10-12.

Kysyi, J. М., Kyk, А. М. Rozroblennya metodu vibratsiyno-vidtsentrovoho zmitsnennya dlya tekhnichnoho zabezpechennya bezvidmovnosti detaley mashyn [Method devised to improve technological reliability of machine parts]. Eastern-European Journal of Enterprise Technologies, 2015, no. 1/7 (73), pp. 41-51. doi: 10.15587 / 1729-4061.2015.36336

Aftanaziv, I. S., Shevchyk, L. I., Strogan, O. I. Pidvyshchennya dovhovichnosti torsionnykh valiv ta dovhomirnykh detaley poverkhnevym plastychnym deformuvannyam [Improvement of durability of torsion shafts and long details by surface plastic deformation]. Scientific Journal "ScienceRise", 2016, no. 4/2 (21), pp. 37-44. Doi: 10.15587 / 2313-8416.2016.67693.

Aftanaziv, I. S., Shevchyk, L. I. Prystriy dlya zmitsnennya poverkhnevym plastychnym deformuvannyam vnutrishnikh tsylindrychnykh poverkhon' dovhomirnykh detaley [Device for strengthening superficial plastic deformation of internal cylindrical surfaces of long-length parts]. Patent Ukraine, no. 116268, 2018.

Stotsko, Z., Kusyj, J., Topilnytskyj, V. Research of vibratoru-centrifugal strain hardening on surface quality of cylindric long-sized machine parts. Journal of Manufacturing and Industrial Engineering, 2012, vol. 11, iss. 1, pp. 15-17.

Read, N., Wang, W., Essa, K. et al. Selective laser melting of AISi10Mg alloy: Process optimization and mechanical properties development. Materials&Design, 2015, vol. 65, pp. 417-424.

Doi: 10.1016/j.matdes.2014.09.044

Thijs, L., Kempen, K., Kruth, J.-P. Humbeeck, J. Van. Fine-stuctured aluminium products with controllable texture by selective laser melting of pre-alloyed AISi10Mg powder. Acta Mater, 2013, vol. 61, pp. 1809-1819. doi: 10.1016/j.actamat.2012.11.052.

Guan, K., Wang, Z. M., Goa, M. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Materials&Design, 2013, vol. 50, pp. 581-586. doi: 10.1016/j.matdes.2013.03.056.




DOI: https://doi.org/10.32620/aktt.2018.5.08