INCREASING THE EFFICIENCY OF METHODS OF TREND ANALYSIS AND MONITORING AT GAS-TURBINE ENGINES TECHNICAL CONDITIONS ANALYSIS

В. Ф. Миргород, И. М. Гвоздева

Abstract


The paper suggests an approach to joint trend analysis and trend monitoring of time series formed by the parameters of gas-turbine engines technical conditions in their long-term operation. The proposed approach is based on forming the diagnostic model in the form of a polynomial approximation of the throttle characteristics for the reference motor and selecting the deviations from this model. For the obtained multidimensional time series of deviations from the diagnostic model, the known methods of trend analysis and trend monitoring are consistently applied. The proposed approach makes it possible to increase the reliability of statistical conclusions about the engines technical conditions.

Keywords


diagnostics, time series, trend monitoring, technical condition

References


Ajvazjan, S. A., Buhshtaber, V. M., Enjukov, I. S., Meshalkin, L. D. Prikladnaja statistika. Klassifikacija i snizhenie razmernosti [Applied statistics. Classification and reduction of dimension]. Moscow, Finansy i statistika Publ., 1989. 607 p.

Bendat, Dzh., Pirson, A. Prikladnoj analiz sluchajnyh dannyh [Applied analysis of random data]. Moscow, Mir Publ., 1989. 540 p.

Red. Danilov, D. L., Zhigljavskogo, A. A. Glavnye komponenty vremennyh rjadov: metod “Gusenica” [The main components of time series: the "Caterpillar"]. St. Petersburg, 1997. 307 p.

Epifanov, S. V., Kuznecov, V. I., Bogaenko, I. I. Sintez sistem upravlenija i diagnostirovanija gazoturbinnyh dvigatelej [Synthesis of control systems and diagnostics of gas turbine engines ]. Kiev, Tehnika Publ, 1998. 312 p.

Marpl ml. S.L. Cifrovoj spektral'nyj analiz i ego prilozhenija [Digital Spectral Analysis and its Applications]. Moscow, Mir Publ., 1990. 584 p.

Mirgorod, V. F., Ranchenko, G. S. Kravchenko, V. M. Primenenie diagnosticheskih modelej i metodov trendovogo analiza dlja ocenki tehnicheskogo sostojanija gazoturbinnyh dvigatelej [Application of diagnostic models and methods of trend analysis to assess the technical state of gas turbine engines]. Avіacіjno-kosmіchna tehnіka і tehnologіja, 2008, no. 9 (56), pp. 192-197.

Elsner, I. B. Tsonis, A. A. Singular Spectrum Analysis : A New Tool in Time Series Analysis [Singular Spectrum Analysis: A New Tool in Time Series Analysis ]. New York, London, Plenum Press Publ., 1996. 164 p.

Perron, P. Trend and Random Walks in Macroeconomic Time Series : Furter Evidence from a New Approach [Trend and Random Walks in Macroeconomic Time Series : Furter Evidence from a New Approach]. Journal of Economic Dynamic and Control. 1988, no. 12, pр. 297-332.

Dereng, E. V. Gvozdeva, I. M., Mirgorod, V. F Kombinirovannyj metod TAT obrabotki mnogomernyh vremennih rjadov [Combined TAT method for multidimensional time series processing]. Sistemnі tehnologії. Regіonal'nij mіzhvuzіvs'kij zbіrnik naukovih prac'. Dnіpropetrovs'k [System technologies. Regional interuniversity collection of scientific works], 2013, no. 4 (87), pp. 21-27.




DOI: https://doi.org/10.32620/aktt.2017.7.21