APPLICATION OF METHODS OF COMPUTATIONAL INTELLIGENCE FOR SOLVING DIRECT TASKS OF DESIGN CALCULATION OF DIMENSIONAL CHAINS UNDER CONDITIONS OF PARAMETRIC A PRIORI UNCERTAINTY

Е. С. Меняйлов, Е. М. Угрюмова, С. В. Черныш, А. П. Мазурков, М. Л. Угрюмов, А. Н. Хусточка

Abstract


Statement of a nonlinear problem of calculation of design dimensional chains under conditions of parametric a priori uncertainty is considered. The methodology of synthesis of solutions of multi-objective problems of stochastic optimization with the mixed conditions (MV-tasks) is offered. The effective memetic synthesis algorithm of solutions of MV- tasks is developed. Results of the solution of a problem robust optimal designing of centrifugal impeller fitted with backward curved blades in the conditions of stochastic nature of the input data, the decision-making supports got by means of interactive computer system «Concept_Pro_St®» are presented

Keywords


computational intelligence methods, systems for the estimation of quantities and processes, decision theory

References


Linchevskij, P. A., Iorgachev, V. D., Shron, L. B. Osobennosti teorii rascheta razmernyh cepej pri vypolnenii razmernogo analiza tehnologicheskih processov [Features of the theory of calculation of dimensional chains in the performance of dimensional analysis of technological processes]. Trudy Visnyk SevNTU. Mashynopryladobuduvannja ta transport – Mechanical-instrument engineering and transport, 2012, vol. 129. pp.133 – 136.

Hil'kevich, Ja. M., Pestov, S. P., Mazein, P. G. Metody interval'nyh raschetov razmernyh cepej [Methods for interval calculations of dimensional chains]. Izvestija Cheljabinskogo nauchnogo centra. Problemy mashinostroenija, 2004, vol. 1 (22), pp. 107–111.

Frolov, V. V. Analiz i raschet razmernyh cepej detalej avtotraktornoj tehniki na osnove is-kusstvennyh nejronnyh setej [Analysis and calculation of dimensional chains of auto-tractor equipment basing on artificial neural networks]. Avtomobil'nyj transport, 2010. vol. 27, pp. 104–109.

Ajvazjan, S. A., Bezhaeva, Z. I., Staroverov, O. V. Klassifikacija mnogomernyh nabljudenij [Classification of multidimensional observations]. Moscow, Statistika Publ., 1974. 240 p.

Tihonov, A. N., Arsenin, V. Ja. Metody reshenija nekorrektnyh zadach [Methods for solving illposed problems]. Moscow, Nauka Publ., 1986. 288 p.

Urjas'ev, S. P. Adaptivnye algoritmy stohasticheskoj optimizacii i teorii igr [Adaptive algorithms of stochastic optimization and game theory]. Moscow, Nauka Publ., 1990. 184 p.

Li, M., Azarm, S., Aute, V. A Multi-Objective Genetic Algorithm for Robust Design Optimization. Proceedings of GECCO 2005, Washington, D.C., USA, June 25–29, pp. 771–778.

Egorov, I. N., Kretinin, G. V., Leshchenko, I. A., Kuptzov, S. V. Multi-Objective Robust optimization of Air Engine Using IOSO Technology. Conference ASME Turbo Expo 2004, Vienna, Austria, June 14–17. 7 p. ASME Paper GT2004-53504.

Kurejchik, V. M., Rodzin, S. I. Jevoljucionnye algoritmy: geneticheskoe programmirovanie. Obzor. [Evolutionary algorithms: genetic programming] Izvestija RAN. Teorija i sistemy upravlenija, 2002, no. 1, pp. 127–137.

Tronchuk, A. A., Ugryumova, E. M. Matematicheskie modeli i jevoljucionnyj metod reshenija zadach stohastiche-skoj optimizacii [Mathematical models and evolutionary method for solving stochastic optimization problems]. Trudy Vіsnik HNAY. Matematichne modeljuvannja. Іnformacіjnі tehnologії. Avtomatizovanі sistemi upravlіnnja –Mathematicians modeling. Information technology. Automated control systems, 2012, vol. 19 (1015), pp. 292–305.

Karpenko, A. P. Sovremennye algoritmy. Algoritmy, vdohnovlennye prirodoj [Modern algorithms. Algorithms inspired by nature]. Moscow, Izdatel'stvo MGTU im. N. Je. Baumana Publ., 2014. 446 p.

Strilets, V. E., Tronchuk, A. A., Ugryumova, E. M. Sistemnoe sovershenstvovanie jelementov slozhnyh tehnicheskih sistem na osnove koncepcii obratnyh zadach [Systemic improvement of elements of complex technical systems on the basis of the concept of inverse problems]. Kharkov, Nac. ajerokosm. un-t im. N. E. Zhukovskogo «Har'k. aviac. in-t», 2013. 148 p. ISBN 978-966-662-312-9.




DOI: https://doi.org/10.32620/aktt.2017.7.17