MATHEMATICAL MODELING OF JET FLOW OF GAS-AIR MIXTURE WITH VARIOUS IMPURITY CONCENTRATION IN TO THE ATMOSPHERE

Юрий Алексеевич Скоб

Abstract


A mathematical model of jet flow and dispersion of a polluting gas admixture of various concentrations in the surface layer of the atmosphere has been developed. To assess the environmental impact of pollution, a computational technique was used to determine the fields of probability of human impact by toxic gas based on probit analysis. Test calculations of the probability fields of human impact, which was exposed to a toxic gas, thrown into the atmosphere with different concentrations, were carried out. The results can be used to determine the environmental impact of polluting atmosphere of man-made objects.


Keywords


multicomponent gas; liquefied gas evaporation; atmospheric dispersion; admixture mass concentration; damaging factors; probit-function; impact probability

References


ICAO. Environmental Protection. Aircraft Engine Emissions. New York, CRC Press Publ., 2008. 97 p.

Brauer, R. L. Safety and Health for Engineers. New Jersey, Wiley Publ., 2015. 742 p.

Hughes, Ph., Ferrett, E. Introduction to Health and Safety at Work: The Handbook for the NEBOSH National General Certificate. Kidlington, Oxford, Butterworth-Heinemann, 2011. 608 p.

Nolan, Dennis P. Handbook of Fire and Explosion Protection Engineering Principles: for Oil, Gas, Chemical and Related Facilities. Burlington, Gulf Professional Publishing, Elsevier Publ., 2011. 351 p.

Assael, M. J., Kakosimos, K. E. Fires, Explosions, and Toxic Gas Dispersions: Effects Calculation and Risk Analysis. New York, CRC Press Publ., 2010. 349 p.

Granovskiy, E. A., Lyfar, V. A., Skob, Yu. A., Ugryumov, M. L. Numerical Modeling of Hydrogen Release, Mixture и Dispersion in Atmosphere. Proceedings of 1-st International Conference on Hydrogen Safety, Pisa, Italy, 2005. 11 p. Available at: http://conference.ing.unipi.it/ichs2005/Papers/110021.pdf (accessed 3.02.2013).

Andersson, B., Andersson, R., Hakansson, L. et al. Computational Fluid Dynamics for Engineers. New York, Cambridge University Press Publ., 2012. 212 p.

Toro, E. F. Riemann Solvers and Numerical Meth-ods for Fluid Dynamics: A Practical Introduction. Berlin, Springer Publ., 2009. 724 p.

Skob, Yu. A. Raschet veroiatnosti porazheniia cheloveka na osnove modelirovaniia rasseianiia toksichnogo gaza v atmosfere [Computation of the human impact probability on the basis of modeling of toxic gas dispersion in the atmosphere]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2016, no. 4, vol. 131, pp. 79-88.

Knott, G. D. Interpolating Cubic Splines. Boston, Birkhäuser Publ., 2012. 254 p.

Chernyshev, Ju. K. Vypuklye vektornye splajny v primenenii k profilirovaniju lopatok GTD [The convex splines vector applied to the profiling blade]. Aviacijno-kosmicna tehnika i tehnologia – Aero-space technic and technology, 2000, no. 21, pp. 16-18.

Engeln-Müllges, G., Niederdrenk, K., Wodicka, R. Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen. Berlin, Xpert. press Publ., 2010. 756 p.




DOI: https://doi.org/10.32620/aktt.2017.4.10