APPLICATION OF NUMERICAL MODELING METHODS AT EXPERIMENTAL WORKING OFF OF INTAKES OF CENTRAL TYPE

Александр Николаевич Минай, Игорь Викторович Седых, Ирина Юрьевна Кузьмич

Abstract


At the design of intakes of fuel tanks of launch vehicles in engineering practice, empirical and semi-empirical dependences are used for the determination of main parameters of the movement of liquid. However, the received from skilled data, empirical dependencies are applicable for a limited circle of tasks in which conditions (initial and boundary) are similar to for what these dependencies were received. Therefore, the calculated parameters of intakes it has to be validated by the results of experimental working off. Experimental working off intakes at hydrodynamic stands is, as a rule, carried out on natural tanks and their large-scale models (skilled designs) in terrestrial conditions. For confirmation of similarity of hydrodynamic processes, experimental working off the large-scale models is carried out on several skilled designs of different scales and several model liquids. Now, with the development of computer facilities and numerical methods of the solution of the differential equations of the movement of liquid, there was an opportunity to replace almost universal use of empirical dependences with more exact computing experiment. It, in some cases, allows reducing the quantity of the used skilled designs, terms of carrying out experimental working off, and, as a result, material expenses. The article presents results of the experimental definition of the static hydraulic rest of a component of fuel in skilled designs of a tank of the first step of carrier rockets with the central selection of a component and numerical modeling on mathematical 3D and 2D models of skilled designs (similar scale) are considered. The authors developed the calculated and experimental method of verification of results of numerical modeling allowing them to conduct necessary researches with the demanded accuracy. The offered approach allows improving the existing traditional method of experimental working off of intakes, already at the initial stage of development to optimize their parameters, to reduce the volume of necessary experimental working off and to lower time and material expenditure on its carrying out.

Keywords


intakes; static hydraulic residual; experimental working off; numerical modeling; hydrodynamic similarity

References


Beljaev, N. M. Raschet pnevmogidravlicheskih sistem rakety [Calculation of rocket pneumohydraulic systems]. Moscow, «Mashinostroenie» Publ., 1983. 223 p.

Tokarev, V. E. Istechenie zhidkosti iz emkosti s obrazovaniem voronki [The outflow of liquid from the tank with the formation of a funnel]. Izvestija vysshih uchebnyh zavedenij. Aviacionnaja tehnika, 1967, no. 3, pp. 92-94.

Shevchenko, B.A. Raschetnyj i jeksperimental'nyj metod razrabotki sredstv zabora komponentov topliva iz bakov letatel'nyh apparatov s zhidkostnym raketnym dvigatelem. Dys. … kand. tekhn. nauk. [Estimated and experimental method for the development of means for collecting fuel components from tanks of aircraft with a liquid rocket engine. Diss. … cand. tech. sci.] Dnepropetrovsk, KB «Juzhnoe» Publ., 1990. 209 p.

Bagrov, V. V., Kurpatenok, A. V., Poljaev, V. M. Kapilljarnye sistemy otbora zhidkosti iz bakov kosmicheskih apparatov [Capillary systems for selecting liquid from spacecraft tanks]. Moscow, UNPC «JeNERGOMASh» Publ., 1997. 328 p.

Abramson, Y. N. Ranaleben, G. E. Simulation of fuel sloshing characteristics in missile tanks by use of small models. ARS Journal, 1960, vol. 30, no. 7, pp. 603-613.

Mikishev, G. R. Jeksperimental'nye metody v dinamike kosmicheskih apparatov [Experimental methods in the dynamics of spacecraft]. Moscow, «Mashinostroenie» Publ, 1978. 246 p.

Ring, Je. Dvigatel'nye ustanovki raket na zhidkom toplive [Liquid propellant rocket propulsion systems]. Moscow, «Mir» Publ., 1966. 400 p.

Siedykh, I. V., Smolenskij, D. Je. Jeksperimental'noe podtverzhdenie rabotosposobnosti kapilljarnogo zaboronogo ustrojstva pri otdelenii kosmicheskogo apparata [Experimental confirmation of the operability of a capillary intake device in the separation of the spacecraft]. Mehanika giroskoicheskih system, 2017, no. 33, pp. 105-114. DOI: 10.20535/0203-3771332017119618.

Siedykh, I. V., Smolenskij, D. Je., Nazarenko, D. S. Jeksperimental'noe podtverzhdenie rabotosposobnosti kapilljarnogo zabornogo ustrojstva (setchatogo razdelitelja) pri programmnom razvorote [Experimental confirmation of the operability of a capillary intake device (mesh separator) during a program turn]. Vіsn. Dnіpr. un-tu. Raketno-kosmіchna tehnіka, 2018, vol. 21, no. 26, pp. 112-119.

Fletcher, K. Vychislitel'nye metody v dinamike zhidkostej. V 2-h tomah. T. 1. Osnovnye polozhenija i obshhie metody [Computational methods in fluid dynamics. In 2 volumes. Vol. 1. The main provisions and general methods] Moscow, «Mir» Publ. 1991. 504 p.

Brujaka, V. A., Fokin, V. G., Soldusova, E. A., Glazunova, I. E., Adejanov, I. E. Inzhenernyj analiz v ANSYS Workbench. Ucheb. posob. [Engineering analysis at ANSYS Workbench]. Samar. gos. tehn. un-t Publ., 2010. 271 p.

Baiges, J., Codina, R., Pont, A., Castillo E. An adaptive fixed-mesh ale method for free surface flows Comput. Methods Appl. Mech. Eng., 2017. no. 313, – pp. 159–188. DOI: 10.1016/j.cma.2016.09.041.

Battaglia, L., Cruchaga, M., Storti, M., D’Elía, J., Aedo, J. N., Reinoso. R. Numerical modelling of 3D sloshing experiments in rectangular. Appl. Math. Modell., 2018, no. 59, pp. 357–378. DOI: 10.1016/j.apm.2018.01.033

Idel'chik, I.E. Spravochnik po gidravlicheskim soprotivlenijam [Hydraulic Resistance Reference]. Moscow, «Mashinostroenie» Publ., 1975. 558 p.

Novickij, P.V., Zograf, I.A. Ocenka pogreshnostej rezul'tatov izmerenij [Estimation of errors of measurement results]. Leningrad, JeNERGOATOMIZDAT, 1991. 301 p.




DOI: https://doi.org/10.32620/aktt.2019.6.05