PECULIARITIES OF APPLICATION OF METHANOL CONVERSION PRODUCTS IN A SHIP GAS TURBINE PLANTS WITH THERMOCHEMICAL REGENERATION OF WASTE HEAT
Abstract
Keywords
Full Text:
PDF (Русский)References
IMO Train the Trainer (TTT) Course on Energy Efficient Ship Operation. Module 2 – Ship Energy Efficiency Regulations and Related Guidelines. – 2016. Available at: http://www.imo.org/en/OurWork/ Environment/PollutionPrevention/AirPollution/Pages/IMO-Train-the-Trainer-Course.aspx (accessed 1.05.2019).
Matveev, I., Serbin, S. Investigation of a reverse-vortex plasma assisted combustion system. Proc. of the ASME. Heat Transfer Summer Conf., Puerto Rico, USA, 2012, HT2012-58037, pp. 133-140.
Serbin, S. Features of liquid-fuel plasma-chemical gasification for diesel engines. IEEE Trans. Plasma Sci., 2006, vol. 34, no. 6, pp. 2488-2496.
Serbin, S. I., Matveev, I. B., Goncharova, M. A. Plasma Assisted Reforming of Natural Gas for GTL. Part I. IEEE Trans. Plasma Sci., 2014, vol. 42, no. 12, pp. 3896-3900.
Cherednichenko, O., Tkach, M. Vliynie klimaticheskikh faktorov na efektivnost utilizatsionnoy metallogidridnoy ustanovki dvukhtoplivnogo malooborotnogo DVS gazovoza [Influence of Climatic Factors on the Efficiency of Disposal Metal-Hydride Unit for the Double-Fuel Low-Speed Internal Combustion Engine of Gas Tankers]. Trudy NTU “KhPI” – Bulletin of NTU "KhPI", 2017, Vol. 10(1232), pp. 85-91. DOI: 10.20998/2078-774X.2017.10.12.
Global Marine Fuel Trends 2030. Available at: http://discovery.ucl.ac.uk/1472843/1/Global_Marine_Fuel_Trends_2030.pdf (accessed 1.05.2019).
Poran, A., Tartakovsky, L. Energy efficiency of a direct injection internal combustion engine with high-pressure methanol steam reforming. Energy, 2015, Vol. 88, pp. 506-514.
Tartakovsky, L., Baibikov, V., Veinblat, M., Modeling Methanol Steam Reforming for Internal Combustion Engine. Energy and Power, 2014, Vol. 4(1A), pp. 50-56. DOI: 10.5923/s.ep.201401.04
Tartakovsky, L., Baibikov, V., Veinblat, M., Comparative performance analysis of SI engine fed by ethanol and methanol reforming products. SAE Technical Paper, 2013, Paper 11, pp. 1-14. DOI: 10.4271/2013-01-2617.
Cherednichenko, O., Serbin, S. Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat. Journal of Marine Science and Application, 2018, vol. 17, iss. 1, pp. 122-130. DOI: 10.1007/s11804-018-0012-x.
Cherednichenko, O. Analysis of efficiency of diesel-gas turbine power plant with thermo-chemical heat recovery. MOTROL. Commission of motorization and energetics in agriculture. Lublin-Rzeszow, 2015, vol. 17, no. 2, pp. 25-28.
Pashchenko, D. Thermodynamic equilibrium analysis of combined dry and steam reforming of propane for thermochemicalwaste-heat recuperation. Int. J. Hydrogen Energy, 2017, vol. 42(22), pp. 14926-14935.
Cherednichenko, O. Povyshenie jeffektivnosti jenergeticheskih ustanovok sudov-gazovozov primeneniem termohimicheskih tehnologij [Increase of efficiency of ship power plants of gas carriers with application of thermochemical technologies]. Dvigateli vnutrennego sgoranija – ICE, 2017, no. 1, pp. 46-51. DOI: 10.20998/0419-8719.2017.1.09
Cherednichenko, A. K. Modelirovanie energokompleksov s termokhimicheskoi regeneratsiei tepla dlya sudov-gazovozov [Modeling of efficiency of ship power plants with ther-mochemical heat recovery for liquefied natural gas carriers]. Vestnik dvigatelestroenija – Herald of Aeroenginebuilding, 2016, vol. 2, pp. 36-41.
Tartakovsky, L., Sheintuch, M. Fuel reforming in internal combustion engines. Progress in Energy and Combustion Science, 2018, vol. 67, pp. 88-114.
Poran, A., Tartakovsky, L. Performance and emissions of a direct injection internal combustion engine devised for joint operation with a high- thermochemical recuperation system. International journal of hydrogen energy, 2017, vol. 42, pp. 15652-15668.
Romanovsky, G. F., Serbin, S. I., Patlaychuk, V. M. Suchasni gazoturbinnye agregatu [Advanced gas turbine plants], 2005, Nikolaev, NUK Publ. 344 p.
Romanovsky, G. F., Serbin, S. I., Vaschilenko, M. V. Teorety`chni osnovy` proektuvannya sudnovy`x gazoturbinny`x agregativ [Theoretical bases of design of ship gas turbine units], 2003, Nikolaev, UDMTU Publ. 304 p.
DOI: https://doi.org/10.32620/aktt.2019.3.03