TURBOSHAFT ENGINE THERMOGASDYNAMIC PARAMETERS CALCULATION METHOD BASED ON BLADE-TO BLADE DESCRIPTION OF TURBOMASHINES. PART II. STAGE AND MULTISTAGE COMPRESSORS PARAMETERS DETERMINATION

Людмила Георгиевна Бойко, Александр Евгеньевич Демин, Наталия Владимировна Пижанкова

Abstract


Gas Turbine Engine (GTE) operating characteristics such as thrust (or power), specific fuel consumption and other cycle parameters on different regimes, can be determined by engine modeling and applying correspondent calculation method. Its accuracy is the function of the engine’s element maps definition precision. So these maps representations influence for engines investigation results significantly. Main points and equation system for engine performances calculation method were represented in Part I of this article. The method gives an opportunity for the flow path thermodynamical parameters and engine integral values analyzing by using multistage axial blade machines blade-to-blade descriptions. The compressor and gas turbine and parameters are getting by special program modules, adding to the engine operating characteristics investigation program complex. These modules use the flow path and cascade middle radius geometrical parameters as the data for calculation. The goal of this article is the representation of the method for axial stages and multistage compressors performances definition. The calculation technique is based on one-dimensional (1D) multistage axial compressor flow description. Proposed 1D flow analysis method allows to get the multistage axial compressor maps taking into account the blade-to-blade gaps flow bleeding and by-pass. The method including is founded on the thermal and gas dynamic equations and turbomachinery theoretical dependences and empirical functions for losses and deviation angles determination. Besides, the representing method allows to calculate gas dynamic parameters, velocity triangles, angles of attack, evaluate their deviations from optimal values, hydraulic losses. Also, it can show accordance of stages working on different regimes, find the stage, which is a reason for compressor instability, and stall margin. This method can be used in GTE mathematic simulation, founded on blade-to-blade description multistage blade machines or also in multistage compressor designing. The proposed method gives the opportunity to control the stator variable vanes stagger angles control and to analyze its influence for stage and multistage compressor gas dynamic parameters and maps.

Keywords


Mass averaged flow compressor parameters calculation method; stage gas dynamic parameters; compressor performance; stability margin; loss coefficient; deviation angle

References


Druzhinin, L. N. Matematicheskoe modelirovanie GTD na sovremennyh JeVM pri issledovanii parametrov i harakteristik aviacionnyh dvigatelej [GTE modern computer mathematic simulation for aviation engine parameters and perfomances investigation]. Trudy CIAM, Moscow, vol. 832, CIAM Publ., 1979. 45 p.

Ivanov, M. Ja., Nigmatulin, R. Z. Vysokourovnevoe modelirovanie rabochego processa v gazovyh turbinah [Working process high level simulation in Gas Turbines]. Trudy CIAM, Moscow, 2010, vol. 1342, CIAM Publ., pp. 11-56.

Tunakov, A. P. Metody optimizacii pri dovodke i proektirovanii gazoturbinnyh dvigatelej [Finishing and design gas turbine engines optimization methods]. Moscow, Mashinostroenie Publ., 1979. 184 p.

Morozov, S. A., Osipov, B. M., Titov, A. V, Tunakov, A. P., Khamzin, A. S. Programmnyj kompleks GRAD – gazodinamicheskie raschety aviacionnyh dvigatelej [Program complex GRAD – aviation engines gasdynamic calculations]. Aviakosmicheskie tehnologii i oborudovanie : sb. Nauchn.-prakt. konf. Kazanskogo gosudarstvennogo tehnicheskogo un-ta – Aerospace Technologies and Equipment: Proc. of Scientific -Practical. Conf. Kazan state technical university, Kazan, August 14-17, 2002, pp. 190-196.

Ahmedzjanov, A. M., Alekseev, Ju. S., Gumerov, H. S. Proektirovanie aviacionnyh gazotur-binnyh dvigatelej [Aviation gas turbine engines design]. Moscow, Mashinostroenie Publ., 2000. 453 p.

Ahmedzjanov, D. A., Krivosheev, I. A. Termo-gazodinamicheskij analiz rabochih processov GTD v komp'juternoj srede DVIGwp [GTE working processes thermogasdynamic analisys in computing program DVIGwp]. Ufa, UGATU Publ., 2003. 162 p.

GasTurb 13. Available at: http://www.gasturb.de (аccessed 25.10.2018).

Visser, W. P., Broomhead, M. J. GSP, A Generic Object-Oriented Gas Turbine Simulation Environment, Proc. of ASME TurboExpo 2000 May 8-11, Munich, Germany, 2000, no. 2000-GT-0002. 9 p.

NPSS Consortium. Available at: http://npssconsortium.org (аccessed 3.01.2018).

Jones, S. M. Steady-State Model of Gas Turbines Using the Numerical Propulsion System Simulation Code. Proc. of ASME TurboExpo 2010, June 14-18, Glasgow, UK, 2010, no. 2010-GT-22350. 5 p.

Marchukov, E. V., Leshhenko, I. A.,

Vovk, M. Ju., Iljushin, M. N. Opyt ispol'zovanija programm UNI MM dlja vypolnenija termodinamicheskih raschetovturboreaktivnyh dvuhkonturnyh dvigatelej [Experience of applying of program UNI MM for making thermodynamic calculations turbojet bypass engines]. Nasosy. Turbiny. Sistemy – Pumps. Turbines. Systems, 2015, no. 2 (15), pp. 45-52.

Alexiou, A., Mathioudakis, K. Gas Turbine Engine Perfomance Model Application Using an Object-Oriented Simulation Tool. Proc. of ASME Turbo Expo 2006, May 8–11, Barcelona, Spain, 2006, no. 2006-GT-9033. 9 p.

Alexiou, A., Basibergen, E. H., Kogenhop, O., Mathiodakis, K., Arendsen, P. Capabilities for Gas Turbine Engine Performance Simulations, Proc. of ASME TurboExpo 2007, May 14-17, Montreal, Canada, 2007, no. 2007-GT-27086. 10 p.

Ezrohi, Yu. A. Matematicheskoe modelirovanie aviacionnyh GTD s povencovym opisaniem lopatochnyh mashin v sisteme dvigatelja [Mathematic simulation aviation GTE with blade-to-blade description]. Aviacionnoe dvigatelestroenie – Aviation Engines, 1995, no. 1, pp. 28-51.

Kurzke, J. A. About Simplification in Gas Turbine Performance Calculations, Proc. of ASME TurboExpo 2007 May 14-17, Montreal, Canada, 2007, no. 2007-GT-27620. 9 p.

Boyko, L. G., Karpenko, E. L. Razrabotka metoda rascheta harakteristik turboval'nogo dvigatelja s povencovym opisaniem mnogostupenchatogo osevogo kompressora [Turboshaft engine perfomances calculation method with taking into account blade to blade description multistage axial compressor]. Vestnik dvigatelestroenija – Herald of aeroengine building, 2007, no. 3, pp. 143-146.

Boyko, L. G., Karpenko, E. L. Vlijanie ugla ustanovki lopatok vhodnogo napravljajushhego apparata na jekspluatacionnye harakteristiki gazoturbinnogo dvigatelja [Inlet guide vanes blades angle influence on gas turbine engine perfomances]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2008, no. 4 (51), pp. 43-50.

Boyko, L. G., Karpenko, E. L. Matematicheskaja model' gazoturbinnogo dvigatelja s povencovym opisaniem mnogo-stupenchatogo osevogo kompressora i ee prakticheskoe primenenie [Multistage axial compressor blade-to-blade describing in mathematic simulation gas turbine engine and its practice using]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2008, no. 6 (53), pp. 21-27.

Boyko, L. G., Kislov, O. V., Pizhankova, N. V. Metod rascheta termogazodinamicheskih parametrov turboval’nogo GTD na osnove povencovogo opisanija lopatochnyh mashin. Chast 1. Osnovnye uravnenija [Thermodynamics parameters turboshaft GTE calculation method based on blade-to-blade description blade machine. Part 1. Main Equations]. Aviacijno-kosmicna tehnika i tehnologia– Aerospace technic and technology, 2018, vol. 1(145), pp. 48-58.

Druzhinin, L. N., Morozova, N. V. Approksimacija harakteristik kompressora analiticheskimi funkcijami dvuh peremennyh [Approximation of compressor characteristics by analytical functions of two variables]. Trudy CIAM, Moscow, CIAM Publ., 1975, no. 645. 5 p.

Gumerov, H. S., Magadeev, A. Ja., Gavrilov, A. S. Analiticheskij metod zadanija harakteristik kompressora [Analytical method compressor characteristic assignment]. Izv. Vuzov. Aviac. Tehnika – Izvestija vuzov. Aviacionnaja tehnika, 1974, no. 2, pp. 128-131.

Kovarcev, A. N. Predstavlenie v raschetah na JEVM oboshhennyh harakteristik kompressorov GTD s pomoshh'ju mnogom0ernogo parabolicheskogo splajna so svobodnymi granichnymi uslovijami [Representation in general computer calculations of the generalized characteristics of GTE compressors using a multidimensional parabolic spline with free boundary conditions]. Proektirovanie i dovodka aviacionnyh gazoturbinnyh dvigatelej –Aviation Gas Turbine Engine Design and Customization, 1983, no. 24, pp. 25-31.

Grigor'ev, V. A., Kalabuhov, D. S., Rad'ko, V. M. Primenenie metodov nejrosetevoj approksimacii pri obobshhenii i predstavlenii lopatochnyh mashin aviacionnyh GTD [Network approximation technics using in generelisation and representation GTE perfomances]. Izv. Vuzov Aviac. Tehnika – Aviation News, 2015, no. 1, pp. 39-41.

Kurzke, J. A. Advanced User-friendly Gas Turbine Perfomance Calculation on a Personal Computer, Proc. of ASME Int. Gas Turbine and Aerocraft Congress, June 5-8, Houston, Texas, USA. 1995, no. 95-GT-147. 8 p.

Kurzke, J. Correlations Hidden in Compressor Maps, Proc. of ASME TurboExpo 2011 June 6-10, Vancouver, British Columbia, Canada, 2011, no. 2011-GT-45519. 10 p.

Kurzke, J. A Physics Based Metodology for Building Accurate Gas Turbine Performance Models, Proc. of ISABE Paper, no. 2015-20220. 11 p.

Saravanamutto, H. J. H., Maclsaas, B. D. Thermodynamic Mode for Paperline Gas Turbine Diagnostics. Trans of ASME Journal of Engineering for Power, Oct. 1983, vol. 105, pp. 875-884.

Kong, C., Ki, J. Performance Simulation of Turboprop Engine for Basic Trainer, Proc. of ASME TurboExpo 2001 June 4-7, New Orleans, Louisiana, USA, 2001, no. 2001-GT-391. 10 p.

Kurzke, J. How to Get Component Maps for Aircraft Gas Turbine Performance Calculations, Proc. of ASME Int. Gas Turbine and Aerocraft Congress June 10-13, Birmingham, UK, 1996, no. 96-GT-164. 9 p.

Gorjunov, A. I., Gorjunov, I. M. Modelirovanie raspredelennogo otbora i podvoda ohlazhdajushhegovozduha v GTD [Modeling dispersed bleeding and admission cooling air into GTE. Vestnik Samarskogo gosudarstvennogo ajerokosmicheskogo universiteta –Bulletin of the Samara State Aerospace University, 2009, no. 3 (19), pp. 232-234.

Gorjunov, I. M., Gorjunov, A. I. Sozdanie matematicheskoj modeli GTD i JeU s uchetom neravnomernosti parametrov rabochego tela, otbora I podvoda vozduha na ohlazhdenie [Mathematic simulation of GTE and EP creation with taking to account unevenness parameters working substance, air cooling bleeding and admission creation]. Gazoturbinnye tehnologii – Gas Turbine Technologies, 2011, no. 1, pp. 20-23.

Boyko, L., Dyomin, A. Numerical Study of Flows in Axial Compressors of Aircraft Gas-Turbine Engines. Eastern-European Journal of Enterprise Technologies, 2018. vol. 4(94), pp. 40-49. DOI: 10.15587/1729-4061.2018.139445

Boyko, L. G., Barisheva, E. S., Dyomin, A. E., Fesenko, K. V. Kompleks metodov poverochnogo raschetaosevyh i centrobezhnyh kompressorov [Complex of Axial and centrifugal compressors calculation methods] Trudy XV Mezhdunarodnoj nauchno-tehnicheskoj konferencii po kompressornoj tehnike. – Proc. of Int. Sci.-Techn. Compressor Conf., June 19-20 2011, vol. 1, pp. 250-259.

Boyko, L. G., Ershov, V. N., Girich, G. A., Yanevich, V. N. Metod rascheta dvumernogo techenija v mnogostupenchatom osevom kompressore [Multistage axial compressor flow two-dimensional calculation method]. Izv. Vuzov. Mashinostroenie, 1989, no. 5, pp. 56-60.

Lieblein, S. Loss and Stall Analysis of Compressor Cascade. Trans. of ASME, 1959, no. 3, pp. 387-400.

Carter, A. D. The Calculation of Optimum Incidences for Aerofoils. Aeronautical Research Council Current Papers, 1964, no. 646, London, Her Majesty’ s Stationery Office Publ. 19 p.

Koh, S. S., Smith, L. H. Istochniki i velichiny poter' v osevyh kompressorah [Axial Compressors Sourses and losses values]. Jenergeticheskie mashiny i ustanovki – Energetic Machines and Plants, 1976, no. 3, pp. 128-145.

Davis, W. R. A Computer Program for the Analysis and Design of the Flow in Turbomachinery. Part B – Loss and Deviation Correlations. Report ME/A70–1. – Division of Aerothermodynamics. Carleton University, July, 1970. 73 p.

Al-Daini, A. J. Loss and Deviation Model for a Compressor Blade Element. Int. J. Heat and Fluid Flow, 1986, vol. 7, no. 1, pp. 69–78.

Svjen, V. K. Prakticheskij metod rascheta harakteristik okolozvukovogo kompressora. [Transonic compressor perfomances calculation practice method]. Jenergeticheskie mashiny i ustanovki – Energetic Machines and Plants, 1961, vol. 83, no. 3, pp. 130-141.




DOI: https://doi.org/10.32620/aktt.2019.1.02