Low-frequency oscillations of combustion products in the chamber of a low-thrust liquid rocket engine manufactured using additive technologies
Abstract
Keywords
Full Text:
PDF (Українська)References
Gradl, Paul R., & Protz, Christopher S. Technology advancements for channel wall nozzle manufacturing in liquid rocket engines. Acta Astronautica. 2020, vol. 174, pp. 148–158. DOI: 10.1016/j.actaastro.2020.04.067.
Test and Evaluation Guideline for Liquid Rocket Engines. Joint Army Navy NASA Air Force (JANNAF) Liquid Propulsion Subcommittee (LPS) Test Practices and Standards Panel (TPSP). 2010. Available at: https://apps.dtic.mil/sti/tr/pdf/ADA554916.pdf (accessed: 23.05.2024).
Rossi, F., Marchan, R., Nikolayev, O., & Bashliy, I. Preliminary study of the high-frequency instability of an aerospike rocket engine. 9ᵀᴴ European conference for aeronautics and space sciences (EUCASS). Available at: https://www.eucass.eu/component/docindexer/?task=download&id=6657 (accessed: 23.05.2024).
Müller, I., Kuhn, M., Petkov, I., Bletsch, S., Huybrechts, K., & Cauwenbergh, P. Van 3D-Printed coaxial injector for a LOX/kerosene rocket engine. Space propulsion, 2018. Available at: https://www.small-launcher.eu/wp-content/uploads/M%C3%BCller-3d-printed-coaxial-injector-for-a-LOX-kerosene-rocket-engine-SP2018_176-Sevilla-2018.pdf (accessed: 23.05.2024).
Vekilov, S., Lipovsikyi, V., Marchan, R., Lohvynenko, A., & Pustovoy, R. Teoretical-experimental comparison of the models of additively manufactured swirl injectors based on the hydraulic testing results. Journal of Rocket-Space Technology, 2023, vol. 31, no. 4, pp. 148–158. DOI: 10.15421/452319.
Lebedinsky, E. V., Kalmykov, G. P., & Mosolov, S. V. Working processes in the liquid rocket engine and their simulation. Moscow: Mechanical engineering, 2008. 512 p.
Dranovsky, M. L. Combustion Instabilities in Liquid Rocket Engines: Testing and Development Practices in Russia. AIAA Progress In Astronautics And Aeronautics, 2007, vol. 221. Available at: https://dokumen.pub/combustion-instabilities-in-liquid-rocket-engines-testing-and-development-practices-in-russia-1nbsped-9781600864711-9781563479212.html (accessed: 23.05.2024).
Liquid propellant rocket combustion instability. NASA SP-194, 1972. 631 p. Available at: https://ntrs.nasa.gov/citations/19720026079 (accessed: 23.05.2024).
Taherinezhad, R., & Zarepour, G. Evaluation of vortex shedding phenomenon in a sub-scaled solid rocket motor. Aerospace Science and Technology, 2020, vol. 107, article no. 106272. DOI: 10.1016/j.ast.2020.106272.
Islam, Sh. A., Hao, L., Javaid, Z., Xiong, W., Li, Y., Jamil, Y., Chen, Q., & Han, G. Surface Roughness of Interior Fine Flow Channels in Selective Laser Melted Ti-6Al-4V Alloy Components. Micromachines, 2024, vol. 15, iss. 3, article no. 348. DOI: 10.3390/mi15030348.
Vekilov, S., & Lipovskyi, V. Comparison and analysis between conventional and additive manufacturing technologies of LPRE. System Design and Analysis of Aerospace Technique Characteristics, 2022, vol. 31, no. 2, pp. 14-25. DOI: 10.15421/472210.
Belov, G. V., & Trusov, B. G. Software for simulation of thermo-dynamic equilibrium states of combustion fuels. Rocket and space propulsion systems. Collected materials of All-Russian Scientific and Technical Conference. Moscow, Diona LLC Publishing Company, 2010, pp. 21-22.
Kohnke, P. Ansys, Inc. Theory Manual. 001369. Twelfth Edition. Canonsburg, SAS IP, Inc., 2004. 1266 p.
DOI: https://doi.org/10.32620/aktt.2024.4sup1.09