Analysis of environmentally friendly commercial aviation development ways
Abstract
Keywords
Full Text:
PDFReferences
CO2 Emissions From Fuel Combustion: Highlights 2017: Technical Report. Paris, International Energy Agency, 2017. 162 p.
CO2 Emissions From Fuel Combustion: Highlights 2019: Technical Report. Paris, International Energy Agency, 2019. 165 p.
Aviation Benefits Beyond Borders: Technical Report. Geneva, Air Transport Action Group, 2016. 80 p.
Aviation Benefits Beyond Borders: Technical Report. Geneva, Air Transport Action Group, 2020. 96 p.
Innovation for a Green Transition: 2022 Environmental Report. International Civil Aviation Organization, 2022. 414 p. Available at: https://www.icao.int/environmental protetion/Documents/EnvironmentalReports/2022/ICAO%20ENV%20Report%202022%20F4.pdf. (аccessed 30.11.2023).
Global Market Forecast 2023-2042. Airbus, 2023. 30 p. Available at: https://www.airbus.com/en/products-services/commercial-aircraft/market/global-market-forecast/ (аccessed 30.11.2023).
Commercial Market Outlook 2023–2042. Boeing, 2023. 2 p. Available at: https://www.boeing.com/resources/boeingdotcom/market/assets/downloads/2023-Commercial-Market-Outlook-Executive-Summary.pdf (аccessed 30.11.2023).
Resolutions Adopted at the 38th Session of the Assembly: Provisional Edition. International Civil Aviation Organization, 2013. 120 p. Available at: http://www.icao.int/Meetings/a38/Documents/Resolutions/a38_res_prov_en.pdf (аccessed 30.11.2023).
Climate Change Fact Sheet. International Air Transport Association, 2020. 2 p. Available at: https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/fact_sheet_on_climate_change.pdf (аccessed 30.11.2023).
Kyoto Protocol to the United Nations Framework Convention on Climate Change: official text. United Nations, 1998. 21 p. Available at: https://unfccc.int/resource/docs/convkp/kpeng.pdf (аccessed 30.11.2023).
European Aeronautics: A Vision for 2020. Meetings Society’s Needs and Winning Global Leadership: Report of the Group Personalities. European Commission, 2001. 26 p. Available at: http://www.aerohabitat.eu/uploads/media/01 02 2005_ _European_Aeronautics__a_vision_for_2020__500KB_.pdf (аccessed 30.11.2023).
Flightpath 2050: Technical Report. Brussels, European Commission, 2011. 28 p.
The Paris Agreement: official text. United Nations, 2015. 27 p. Available at: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (аccessed 30.11.2023).
Waypoint 2050. Geneva, Air Transport Action Group, 2021. 110 p.
United States 2021 Aviation Climate Action Plan: National Aeronautics and Space Administration Authorization Act of 2022. FAA, 2022. 40 p.
Hydrogen. A future fuel for aviation? Roland Berger GMBH. Munich Germany, 2020. 28 p.
Aviation Climate Solutions. Geneva, Air Transport Action Group, 2015. 136 p.
European Aviation Environmental Report 2019. EASA, Eurocontrol and EEA, 2019. 112 p.
Specification for Collaborative Environmental Management: Edition: 1.3. Eurocontrol, 2021. 65 p.
The EcoPower® System. Available at: http://www.ecopower.aero/EcoPower.php (аccessed 11.12.2023).
European Airspace Design Methodology Guidelines. General Principles and Technical Specifications for Airspace Design. ERNIP Part 1. Eurocontrol, 2023. 406 p.
Making Europe the Most Efficient and Environmentally Friendly Sky to Fly in the World: A Joint Discussion Paper. SESAR Joint Undertaking, 2023. 9p.
Performance Based Navigation. Navigation Strategy 2016. US Department of Transportation. Federal Aviation Administration, 2016. 37 p.
A Report on the History, Current Status, and Future of National Airspace System Modernization: NextGen Annual Report. US Department of Transportation. Federal Aviation Administration, 2020. 155 p.
ACI Europe, Airport Carbon Accreditation. – Available at: https://www.airportcarbonaccreditation.org (аccessed 11.12.2023).
IATA Cabin Waste Handbook. IATA and WRAP, 2019. 101 p.
International catering waste: a case for smarter regulation. IATA, 2018. 4 p. Available at: https://bit.ly/3afWn2V (аccessed 11.12.2023).
Aircraft Fleet Recycling Association (AFRA). Available at: https://www.afraassociation.org (аccessed 11.12.2023).
Liou, M. S., Kim, H., & Liou, M. F. Challenges and Progress in Aerodynamic Design of Hybrid Wingbody Aircraft with Embedded Engines: Technical memorandum NASA/TM 216 218309. NASA, 2016. 48 p. Available at: https://ntrs.nasa.gov/api/citations/20160007898/downloads/20160007898.pdf (аccessed 01.06.2016).
Graham, W. R., Hall, C. A., & Morales, M. V. The potential of future aircraft technology for noise and pollutant emissions reduction. Transport Policy, 2014, vol. 34, pp. 36-51. DOI: 10.1016/j.tranpol.2014.02.017.
Linke, F., Grewe, V., & Gollnick, V. The Implications of Intermediate Stop Operations on Aviation Emissions and Climate. Meteorologische Zeitschrift, 2017, vol. 26, iss. 6, pp. 697-709. DOI: 10.1127/metz/2017/0763.
Daggett, D. L., Fucke, L., Hendricks, R. C., & Eames, D. J. H. Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides. 40th Joint Propulsion Conference and Exhibit cosponsored by the AIAA, ASME, SAE, and ASEE Fort Lauderdale, Florida, July 11 14, 2004. 17 p.
Daggett, D. L., Ortanderl, S., Eames, D., & Berton, J. J. Revisiting Water Injection for Commercial Aircraft. World Aviation Congress & Exposition, Nov. 2004, Reno, NV, USA. 2004-01-3108. Available at: https://www.researchgate.net/publication/287645497 (аccessed 30.11.2023).
Beginner’s Guide to Sustainable Aviation Fuel. Geneva, Air Transport Action Group, 2023. 34 p.
Edwards, T., Moses, C., & Dryer, F. Evaluation of Combustion Performance of Alternative Aviation Fuels. Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA, Nashville, TN, USA, 25 28 July 2010. 21 p. DOI: 10.2514/6.2010-7155.
Choi, Y., & Lee, J. Estimation of Liquid Hydrogen Fuels in Aviation. Aerospace, 2022, vol. 9, iss. 10, article no. 564. DOI: 10.3390/aerospace9100564.
European Aviation Environmental Report 2022. EASA, Eurocontrol and EEA, 2022. 144 p.
Zhang, Ch., Hui, X., Lin, Y., & Sung, C. J. Recent Development in Studies of Alternative Jet Fuel Combustion: Progress, Challenges, and Opportunities. Renewable and Sustainable Energy Reviews, 2016, vol. 54, pp. 120 138. DOI: 10.1016/j.rser.2015.09.056.
Stratton, R. W., Wong, H. M., & Hileman, J. I. Life Cycle Greenhouse Gas Emissions from Alternative Jet Fuels: Partner project 28 report. Massachusetts Institute of Technology, Cambridge, 2010. 153 p.
Lokesh, K., Sethi, V., Nikolaidis, T., Goodger, E., & Nalianda, D. Life Cycle Greenhouse Gas Analysis of Biojet Fuels with a Technical Investigation into Their Impact on Jet Engine Performance. Biomass and Bioenergy, 2015, vol. 77, pp. 26-44. DOI: 10.1016/j.biombioe.2015.03.005.
Goldmann, A., Sauter, W., Oettinger, M., Kluge, T., Schröder, U., Seume, J. R., Friedrichs, J., & Dinkelacker, F. A Study on Electrofuels in Aviation. Energies, 2018, vol. 11, iss. 2, article no. 392. DOI: 10.3390/en11020392.
Braun, H. The Phoenix Project: Shifting to a Solar Hydrogen Economy by 2020. Chemical Industry & Chemical Engineering Quarterly, 2008, vol. 14, iss. 2, pp. 107-118. DOI: 10.2298/CICEQ0802107B.
Schneider, M., Dickhoff, J., Kusterer, K., Visser, W., Stumpf, E., Hofmann, J., & Bohn, D. Development of a Gas Turbine Concept for Electric Power Generation in a Commercial Hybrid Electric Aircraft. Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards. Phoenix, Arizona, USA, June 17–21, 2019, article no. V001T01A028. 11 p. DOI: 10.1115/GT2019-92065.
Isikveren, A. T., Kaiser, S., Pornet, C., & Vratny, P. C. Pre-design Strategies and Sizing Techniques for Dual-Energy Aircraft. Aircraft Engineering and Aerospace Technology, 2014, vol. 86, iss. 6, pp. 525-542. DOI: 10.1108/AEAT-08-2014-0122.
Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions: Committee on Propulsion and Energy Systems. Washington DC, National Academies Press, 2016. 108 p.
Brelje, B. J., & Martins, J. R. R. A. Electric, Hybrid, and Turboelectric Fixed-Wing Aircraft: A Review of Concepts, Models, and Design Approaches. Progress in Aerospace Science, 2019, vol. 104, pp. 1-19, January 2019. DOI: 10.1016/j.paerosci.2018.06.004.
Valsamis Mylonas, O., Gkoutzamanis, V., & Kalfas, A. Parametric Analysis for On Board Thermal Regulation in a Hybrid-Electric Aircraft. Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine; Ceramics and Ceramic Composites. Rotterdam, Netherlands. June 13–17, 2022, article no. V001T01A029. 11 p. DOI: 10.1115/GT2022-83409.
Hoelzen, J., Liu, Y., Bensmann, B., Winnefeld, C., Elham, A., Friedrichs, J., & Hanke-Rauschenbach, R. Conceptual Design of Operation Strategies for Hybrid Electric Aircraft. Energies, 2018, vol. 11, iss. 1, article no. 217. 26 p. DOI: 10.3390/en11010217.
Schneider, M., Dickhoff, J., Kusterer, K., & Visser, W. Life Cycle Analysis for a Powerplant in a Concept for Electric Power Generation in a Hybrid Electric Aircraft. Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine; Fans and Blowers. Virtual, Online. September 21–25, 2020, article no. V001T01A029. 12 p. DOI: 10.1115/GT2020-15518.
Holsteijn, M., Rao, A., & Yin, F. Operatin Characteristics of an Electrically Assisted Turbofan Engine. Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine; Fans and Blowers. Virtual, Online. September 21–25, 2020, article no. V001T01A028. 10 p. DOI: 10.1115/GT2020-15355.
Borer, N. K., Derlaga, J. M., Deere, K. A., Carter, M. B., Viken, S. A., Patterson, M. D., Litherland, B. L., & Stoll, A. M. Comparison of Aero-Propulsive Performance Predictions for Distributed Propulsion Configurations. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, 2017. 12 p. DOI: 10.2514/6.2017-0209.
Welstead, J. R., & Felder, J. L. Conceptual Design of a Single-Aisle Turboelectric Commercial Transport with Fuselage Boundary Layer Ingestion. Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4 8 January 2016, pp. 1 17.
Jansen, R. H., Duffy, K. P., & Brown, G. V. Partially Turboelectric Aircraft Drive Key Performance Parameters. 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, 2017. 11 p. DOI: 10.2514/6.2017-4702.
Deere, K. A., Viken, J. K., Viken, S. A., Carter, M. B., Wiese, M. R., & Farr, N. Computational Analysis of a Wing Designed for the X-57 Distributed Electric Propulsion Aircraft. 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, 2017. 22 p. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170005883.pdf (аccessed 01.01.2024).
Deere, K. A., Viken, S. A., Carter, M. B., Viken, J. K., Wiese, M. R., & Farr, N. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing. 35th AIAA Applied Aerodynamics Conference, Denver, CO, 2017. 20 p. DOI: 10.2514/6.2017-3921.
Stoll, A. M., Bevirt, J., Moore, M. D., Fredericks, W. J., & Borer, N. K. Drag Reduction Through Distributed Electric Propulsion. 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA, 2014. 10 p. DOI: 10.2514/6.2014-2851.
Hepperle, M. Aspects of Distributed Propulsion – A View on Regional Aircraft. Proceedings of the Symposium Elektrisches Fliegen, Stuttgart, Germany, 18 19 February 2016. 26 p. Available at: https://elib.dlr.de/109315/1/E2Fliegen-2016-Hepperle-DLR_Distributed%20Propulsion%202016.pdf(аccessed 01.01.2024).
Cappuzzo, F., Broca, O., Vouros, S., Roumeliotis, I., & Scullion, C. Application of Model Based Systems Engineering for the Conceptual Desidn of a Hybrid-Electical ATR 42 500: from System Architecture to System Simulation. Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine; Fans and Blowers. Virtual, Online. September 21–25, 2020, article no. V001T01A027. 13 p. DOI: 10.1115/GT2020-15329.
Ghelani, R., Roumeliotis, I., Saias, C., Mourouzidis, C., Pachidis, V., Norman, J., & Basic, M. Design Methodology and Mission Assessment of Parallel Hybrid Electric Propulsion Systems. Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine; Ceramics and Ceramic Composites. Rotterdam, Netherlands. June 13–17, 2022, article no. V001T01A026. 13 p. DOI: 10.1115/GT2022-82478.
Sahoo, S., Kavvalos, M., Diamantidou, D., & Kyprianidis, K. System-Level Assessment of a Partially Distributed Hybrid Electric Propulsion System. ASME. J. Eng. Gas Turbines Power, 2023, vol. 145, iss. 2, article no. 021030. DOI: 10.1115/1.4055827.
Sielemann, M., Gohl, J., Zhao, X., Kyprianidis, K., Valente, G., & Sumsurooah, S. On the Shaft Speed Selection of Parallel Hybrid Aero Engines. Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture. June 7–11, 2021, article no. V001T01A014. 13 p. DOI: 10.1115/GT2021-59500.
Sielemann, M., Kavvalos, M., Selvan, N., Claesson, J., & Kyprianidis, K. Select Trade-Offs in Parallel Hybrid Turboprop Cycle Design. Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine; Ceramics and Ceramic Composites. Rotterdam, Netherlands. June 13–17, 2022, article no. V001T01A014. 14 p. DOI: 10.1115/GT2022-81629.
NASA’s Electrified Aircraft Propulsion Research and Development Efforts: IG 23 014 report. NASA Office of Inspector General, 2023. 40 p.
Sloop, J. L. Liquid Hydrogen as a Propulsion Fuel, 1945–1959: Technical memorandum NASA/SP 4404, 1978. 341 p. Available at: https://ntrs.nasa.gov/api/citations/19790008823/downloads/19790008823.pdf (аccessed 03.12.2023).
Silverstein, A., & Hall, E. W. Liquid hydrogen as a jet fuel for high-altitude aircraft: Reseachmemorandum NASA RM E55C28a, 1955. 56 p. Available at: https://ntrs.nasa.gov/api/citations/19930088689/downloads/19930088689.pdf (аccessed 03.12.2023).
Brewer, G. D., & Morris, R. E. Study of LH2 fueled subsonic passenger transport aircraft: final NASA report CR-144935. Lockheed, 1976. 169 p. Available at: https://ntrs.nasa.gov/citations/19760012056.pdf (аccessed 30.11.2023).
Tupolev Tu-155. Available at: https://en.wikipedia.org/wiki/Tupolev_Tu-155 (аccessed 11.12.2023).
Klug, H. G., & Faass, R. Cryoplane: hydrogen fuelled aircraft– status and challenges. Air and Space Europe, 2001, vol. 3, iss. 3-4, pp. 252-254. DOI: 10.1016/S1290-0958(01)90110-8.
Airbus. Zeroe: Towards the world’s first hydrogen-powered commercial aircraft Airbus 2023. Available at: https://www.airbus.com/en/innovation/zero-emission-journey/hydrogen/zeroe (аccessed 08.09.2022).
Verstraete, D. Long range transport aircraft using hydrogen fuel. International Journal of Hydrojen Energy, 2013, vol. 38, iss. 34, pp. 14824 14831. DOI: 10.1016/j.ijhydene.2013.09.021.
Liquid Hydrogen Fuelled Aircraft – System Analysis: Crypoplane System Analisys G4RD CT 2000 00192 final technical report. Airbus Deutschland GmbH, 2003. 80 p.
Verstraete, D. The potential of liquid hydrogen for long range aircraft propulsion. Cranfield University, 2009. 266 p.
Adler, E. J., & Martins, J. R. R. A. Hydrogen-Powered Aircraft: Fundamental Concepts, Key Technologies, and Environmental Impacts. Progress in Aerospace Sciences, 2023, vol. 141, article no. 100922. 30 p. DOI: 10.1016/j.paerosci.2023.100922.
Boggia, S., & Jackson, A. Some Unconventional Aero Gas Turbines Using Hydrogen Fuel. Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air. Volume 2: Turbo Expo 2002, Parts A and B. Amsterdam, Netherlands. June 3–6, 2002. pp. 683-690. DOI: 10.1115/GT2002-30412.
Brewer, G. D. Hydrogen Aircraft Technology CNC Press. 448 p. Available at: https://books.google.com.nf/books?id=hf-iyU2R7eIC&printsec=frontcover#v=onepage&q&f=false (аccessed 15.12.2023).
Lee, J. A. Hydrogen Embrittlement: Technical memorandum NASA/TM 2016 218602. NASA Marshall Space Flight Center Huntsville, Alabama, 2016. 62 p.
Mital, S. K., Gyekenyesi, J. Z., Arnold, S. M., Sullivan, R. M., Manderscheid, J. M., & Murthy, P. L. N. Review of current state of the art and key design issues with potential solutions for liquid hydrogen cryogenic storage tank structures for aircraft applications: Technical memorandum NASA/TM 2006 214346. Glenn Research Center Cleveland, Ohio, 2006. 50 p.
Robinson, M. J. Determination of Allowable Hydrogen Permeation Rates for Launch Vehicle Propellant Tanks. Journal of Spacecraft and Rockets, 2008, vol. 45, no. 1, pp. 82-89. DOI: 10.2514/1.29709.
Silberhorn, D., Atanasov, G., Walter, J N., & Zill, T. Assessment of Hydrogen Fuel Tank Integration at Aircraft Level. Available at: https://core.ac.uk/download/pdf/237080603.pdf (аccessed 20.12.2023).
Fesmire, J. E., Coffman, B. E., Menghelli, B. J., & Heckle, K. W. Spray-on foam insulations for launch vehicle cryogenic tanks. Cryogenics, 2012, vol. 52, iss. 4-6, pp. 251-261. DOI: 10.1016/j.cryogenics.2012.01.018.
Millis, M. G., Jurns, J. M., Guynn, M. D., Tomsik, T. M., & Van Overbeke, T. J. Hydrogen Fuel System Design Trades for High-Altitude Long-Endurance Remotely-Operated Aircraft: Technical memorandum NASA/TM–2009-215521. NASA, 2009. 27 p.
Troeltsch, F., Engelmann, M., Scholz, A., Peter, F., Kaiser, J., & Hornung, M. Hydrogen Powered Long Haul Aircraft with Minimized Climate Impact. AIAA Aviation 2020 Forum. AIAA, 2020. 14 p. DOI: 10.2514/6.2020-2660.
Abohamzeh, E., Salehi, F., Sheikholeslami, M., Abbassi, R., & Khan, E. Review of hydrogen safety during storage, transmission, and applications processes. Journal of Loss Prevention in the Process Industries, 2021, vol. 72, article no. 104569. DOI: 10.1016/j.jlp.2021.104569.
Warwick, N., Griffiths, P., Keeble, J., Archibald, A., & Pyle, J. Atmospheric implications of increased hydrogen use. Available at: https://www.gov.uk/government/publications/atmosphericimplications-of-increased-hydrogen-use (аccessed 01.01.2024).
Thomas, G., & Parks, G. Potential Roles of Ammonia in a Hydrogen Economy: technical report of USA Department of Energy. USA Department of Energy, 2006. 23 p.
Giddey, S., Badwal, S. P. S., Munnings, C., & Dolan, M. Ammonia as a Renewable Energy Transportation Media. ACS Sustainable Chemistry & Engineering, 2017, vol. 5, iss. 11, pp. 10231 10239. DOI: 10.1021/acssuschemeng.7b02219.
Bauer, Ch., Treyer, K., Antonini, C., Bergerson, J., Gazzani, M., Gencer, E., Gibbins, J., Mazzotti, M., McCoy, S. T., McKenna, R., Pietzcker, R., Ravikumar, A. P., Romano, M. C., Ueckerdt, F., Vente, J., & Van der Spek, M. On the climate impacts of blue hydrogen production. Sustainable Energy & Fuels, 2022, vol. 6, iss. 1, pp. 66 75. DOI: 10.1039/D1SE01508G.
Howarth, R. W., & Jacobson, M. Z. How green is blue hydrogen? Energy Science & Engineering, 2021, vol. 9, iss. 10, pp. 1676 1687. DOI: 10.1002/ese3.956.
Antonini, C., Treyer, K., Streb, A., Van der Spek, M., Bauer, Ch., & Mazzotti, M. Hydrogen production from natural gas and biomethane with carbon capture and storage – A techno-environmental analysis. Sustainable Energy & Fuels, 2020, vol. 4, iss. 6, pp. 2967 2986. DOI: 10.1039/D0SE00222D.
Hoelzen, J., Silberhorn, D., Zill, T., Bensmann, B., & Hanke-Rauschenbach, R. Hydrogen-powered aviation and its reliance on green hydrogen infrastructure – Review and research gaps. International Journal of Hydrogen Energy, 2022, vol. 47, iss. 5, pp. 3108-3130. DOI: 10.1016/j.ijhydene.2021.10.239.
Fuel Cells and Hydrogen 2 Joint Undertaking, Hydrogen-powered aviation: A fact-based study of hydrogen technology, economics, and climate impact by 2050. Clean Sky 2 Report. Belgium, Publications Office of the European Union, 2020. 96 p. DOI: 10.2843/471510.
Xu, D. Technologies and challenges of hydrogen powered aviation. Journal of Physics: Conference Series, 2023, vol. 2608, iss. 1, article no. 012003. DOI: 10.1088/1742-6596/2608/1/012003.
ZeroAvia completes world first hydrogen-electric passenger plane flight. Zero Avia 2020. Available at: https://www.prnewswire.com/news-releases/zeroavia-completes-world-first-hydrogen-electric-passenger-plane-flight-301137976.html (аccessed 25.09.2020).
Airbus reveals hydrogen-powered zero-emission engine. Airbus 2022. Available at: https://www.airbus.com/en/newsroom/press-releases/2022-11-airbus-reveals-hydrogen-powered-zero-emission-engine (аccessed 30.11.2022).
Bellamy, W. Universal Hydrogen Secures Electric Propulsion Supplier in magniX. Available at: https://www.aviationtoday.com/2020/09/23/universal-hydrogen-secures-electric-propulsion-supplier-magnix/ (аccessed 01.01.2024).
Boeing successfully flies fuel cell-powered airplane. Boeing 2008. Available at: https://www.boeing.com/aboutus/environment/environmental_report/_inc/flash-2-1-2.html (аccessed 03.04.2008).
Boretti, A. Perspectives of hydrogen aviation. Advantages in Aircraft and Spacecraft Science, 2021, vol. 8, iss. 3, pp. 199-211. DOI: 10.12989/aas.2021.8.3.199.
Boretti, A. Progress of hydrogen subsonic commercial aircraft. Frontiers in Energy Research, 2023, vol. 11, article no. 1195033. DOI: 10.3389/fenrg.2023.1195033.
Boretti, A. Contribution of jet contrails to regional changes in surface temperature. International Journal of Hydrogen Energy, 2021, vol. 46, iss. 73, pp. 36610-36618. DOI: 10.1016/j.ijhydene.2021.08.173.
DOI: https://doi.org/10.32620/aktt.2024.1.01