Flow development region in the boundary layer: two-component molecular viscosity and partial slip
Abstract
Keywords
Full Text:
PDFReferences
Pavlyuchenko A. M., & Shyiko O. M. Kompleksnyy metod rozrakhunku oporu tertya i teploobminu na poverkhni lʹotnykh osesymetrychnykh obʺyektiv pry polʹoti po trayektoriyi z nayavnistyu v prystinnomu prykordonnomu shari neizotermichnosti, styslyvosti, laminarno-turbulentnoho perekhodu ta relaminarizatsiyi [Complex method for calculating the friction resistance and thermal refraction on the surface of flight axisymmetric objects on flight by trajectory with availability in the wall boundary layer non-isothermal, compressive, laminar-turbulent transition and relainarization]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2018, no. 1, pp. 4-28. DOI: 10.32620/aktt.2018.1.01. (In Ukrainian).
Komarov, B., Zinchenko, D., & Andrieiev, O. Vplyv formy kryla na kharakterystyky pry vykorystanni intehrovanoyi rotornoyi sylovoyi ustanovky litaka [Influence of wing shape on characteristics of fan-wing aircraft power plant]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2023, no. 2, pp. 17-26. DOI: 10.32620/aktt.2023.2.02. (In Ukrainian).
Stokes, G. G. On the theories of the internal friction of fluids in motion, and the equilibrium and motion of elastic solids. Trans. Cambridge Philos. Soc., 1845, vol. 8, pp. 287-305.
Lukianov, P. V., & Song, L. Optimal character and different nature of flows in laminar boundary layers of incompressible fluid flow. Problems of friction and wear, 2022, no. 4(97), pp. 52-60. DOI: 10.18372/0370-2197.4(97)16959.
Navier, C. L. M. H. Memoire sur les lois du movement des fluids. Memoires de l’ Academie Royale des Science de l’ Institut de France, 1823, vol. 6, pp. 389-440. (In French).
Lauga, E., & Squires, T. M. Brownian motion near a partial-slip boundary: A local probe of no-slip condition. Physics of Fluids, 2005, vol. 17, iss. 10, article no. 103102. DOI: 10.1063/1.2083748.
Priezjev, N. V. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures. The Journal of Chemical Physics, 2011, vol. 135, iss. 20, article no. 204704. DOI: 10.1063/1.3663384.
Guo, L., Chen, S., & Robbins, M. O. Effective slip boundary conditions for sinusoidally corrugated surfaces. Phys. Rev. Fluids, 2016, vol. 1, iss. 7, article no. 074102. DOI: 10.1103/PhysRevFluids.1.074102.
Lukianov, P. V., & Song, L. Unsteady incompressible laminar boundary layer: time and space variable molecular viscosity. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2023, no. 3, pp. 50-60. DOI: 10.32620/aktt.2023.3.06.
Kulkarni, Y., Fullana, T., & Zaleski, S. Stream function solutions for some contact line boundary conditions: Navier slip, super slip and generalized Navier boundary conditions. Proc. R. Soc. A, 2023, vol. 479, iss. 2278, article no. 20230141. DOI: 10.1098/rspa.2023.0141.
Lauga, E., & Stone, H. A. Effective slip in pressure-driven Stokes flow. Journal of Fluid Mechanics, 2003, vol. 489, pp. 55-77. DOI: 10.1017/S0022112003004695.
Chen, J., Kim, Y. J., & Hwang, W. R. General criteria for estimation of effective slip length over corrugated surfaces. Microfluids and Nanofluids, 2020, vol. 24, article no. 68. DOI: 10.1007/s10404-020-02363-1.
Cui, H., & Ren, W. A note on the solution to the moving contact line problem with the no-slip boundary condition. Commun. Math. Sci., 2019, vol. 17, iss. 4, pp. 1167-1175. DOI: 10.4310/CMS.2019.v17.n4.a16.
Blasius, H. Grenzschichten in Flussigkeiten mit kleiner Reibung. Zeits. f. Math. u. Phys, 1908, vol. 56, pp. 1-37. (In German).
Stokes, G. G. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Philos. soc., 1851, vol. 9, pp. 1-86.
Rayleigh, Lord. On the motion of solid bodies through viscous liquids. Phil. Mag., Ser. VI, 1911, vol. 21, no. 6, pp. 697-711.
Lukianov, P. V., & Song, L. Compact analogs of the models of vortex flows generated by aircraft flight. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2023, no. 3, pp. 4-20. DOI: 10.32620/aktt.2023.5.01.
Belotserkovskiy, S. M., & Nisht, M. T. Otryvnoye i bezotryvnoye obtekaniye tonkikh kryl'yev ideal'noy zhidkost'yu [Separated and continuous flow of an ideal fluid around thin wings]. Moscow, Nauka Publ., 1978. 352 p. (In Russian).
Bulanchuk, G. G., Bulanchuk, O. N., & Dovgiy, S. A. Metod diskretnykh vikhrevykh ramok so vstavkoy promezhutochnykh tochek na vikhrevoy pelene [Discrete vortex frame method with insertion of intermediate points on the vortex sheet]. Visnyk Kharkivsʹkoho natsionalʹnoho universytetu – Bulletin of the Kharkiv National University, 2009, no. 863, pp. 37-46. (In Russian).
DOI: https://doi.org/10.32620/aktt.2023.6.05
