Compact analogs of the models of vortex flows generated by aircraft flight
Abstract
Keywords
Full Text:
PDFReferences
Shekhovtcov, A. V. Inertsionno-vikhrevoy printsip generatsii usiliy na kryl'yakh nasekomykh [Inertially-vortex principle of generating forces at insect wings]. Prykladna hidromekhanika – Applied hydromechanics, 2011, vol. 13, no.1, pp. 61-76. Available at: http://dspace.nbuv.gov.ua/handle/123456789/116271. (accessed 10.02.2023) (In Russian).
Lamb, H. Hydrodynamics. Cambridge University Press Publ., 1945. 738 p. Available at: https://archive.org/details/hydrodynamics0000lamb/page/n1/mode/2up. (accessed 10.02.2023).
Lin, M., Cui, G. & Zhang, Zh. A new vortex sheet model for simulating aircraft wake vortex evolution. Chines Journal of Aeronautics, 2017, vol. 30, iss. 4, pp. 1315-1326. DOI: 10.1016/j.cja.2017.04.015.
Sohn, S. I. An inviscid model of unsteady separated vortical flow for a moving plate. Theor. Comput. Fluid Dyn., 2020, vol. 34, pp. 187-213. DOI: 10.1007/s00162-020-00524-0.
Solano, D., Xu, L. & Alben, S. Long-time simulations of vortex sheet dynamics. Available at: https://lsa.umich.edu/content/dam/math-assets/math-document/reu-documents/Daniel%20Solano.pdf (accessed 10.02.2023)
Hoepffner, J. & Fontelos, M. A model for global structure of self-similar vortex sheet roll-up. Available at: http://www.lmm.jussieu.fr/~hoepffner/research/spirals.pdf. (accessed 10.02.2023).
Saffman, P. G. Vortex Dynamics. Cambridge University Press Publ., 1993. 311 p. DOI: 10.1017/CBO9780511624063.
Prandtl, L. The generation of vortices in fluid of small viscosity. The Aeronautical Journal, 1927, vol. 31, iss. 200, pp. 718-741. DOI: 10.1017/S0368393100139872.
Batchelor, G. K. An introduction to Fluid Dynamics. Cambridge University Press, 2000. 615 p. DOI: 10.1017/CBO9780511800955.
Sherbokos, O. H. Rozpodil nestatsionarnoho tysku na kryli z heneratoramy vykhriv [Distribution of unsteady wing pressure with vortex generators]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2012, no. 2(89), pp. 60-65. Available at: http://195.88.72.95:57772/csp/nauchportal/Arhiv/AKTT/2012/AKTT212/SCHerbon.pdf. (accessed 10.02.2023) (In Ukrainian).
Lukianov, P. V. & Song, L. Optimal character and different nature of flows in laminar boundary layers of incompressible fluid flow. Problems of friction and wear, 2022, no. 4(97), pp. 52-60. DOI: 10.18372/0370-2197.4(97).16959.
Lukianov, P. V. & Song, L. Unsteady incompressible laminar boundary layer: time and space variable molecular viscosity. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2023, no. 3(187), pp. 50-60. DOI: 10.32620/aktt.2023.3.06.
Meiron, D. I., Baker, G. R. & Orszag, S. A. Analytic structure of vortex sheet dynamics. Part1. Kelvin-Helmholtz instability. J. Fluid Mech., 1982, vol. 114, pp. 283-298. DOI: 10.1017/S0022112082000159.
Baker, G., Caflisch, R. E. & Siegel, M. Singularity formation during Rayleigh-Taylor instability. J. Fluid. Mech., 1993, vol. 252, pp. 51-78. DOI: 10.1017/S0022112093003660.
McNally, C. P., Lyra, W. & Passy, J.-C. A well-posed Kelvin-Helmholtz instability test and comparison. The Astropjysical Journal Supplement Series, 2012, vol. 201, no. 2, article no. 18, pp. 1-17. DOI: 10.1088/0067-0049/201/2/18.
Shadloo, M. S. & Yildiz, M. Numerical modeling of Kelvin-Helmholtz instability using smoothed particle hydrodynamics. International Journal for numerical methods in engineering, 2011, vol. 87, iss. 10, pp. 988-1006. DOI: 10.1002/nme.3149.
Pozrikidis, C. & Higdon, J. J. L Nonlinear Kelvin-Helmholtz instability of a finite vortex layer. J. Fluid Mech., 1985, vol. 157, pp. 225-263. DOI: 10.1017/S0022112085002361.
Kelly, R. E. The Stability of unsteady Kelvin-Helmholtz flow. J. Fluid Mech., 1965, vol. 22, iss. 3, pp. 547-560. DOI: 10.1017/S0022112065000964.
Miura, A. Self-Organization in the Two-dimensional Kelvin-Helmholtz Instability. Physical Review Letters. 1999, vol. 83, iss. 8, pp. 1586-1589. DOI: 10.1103/PhysRevLett.83.1586.
Berlok, T. & Pfrommer, C. On the Kelvin-Helmholtz instability with smooth initial conditions – linear theory and simulations. Monthly Notices of the Royal Astronomical Society, 2019, vol. 485, iss. 1, pp. 908-923. DOI: 10.1093/mnras/stz379.
Nayfen, A. H. & Saric, W. S. Non-linear Kelvin-Helmholtz instability. J. Fluid Mech., 1971, vol. 46, iss. 2, pp. 209-231. DOI: 10.1017/S0022112071000491.
Belotserkovsky, S. M. & Nisht, M. I. Otryvnoye i bezotryvnoye obtekaniye tonkikh kryl'yev ideal'noy zhidkost'yu [Separated and continuous flow of an ideal fluid around thin wings]. Moscow, Nauka Publ., 1978. 352 p. Available at: https://libarch.nmu.org.ua/handle/GenofondUA/50182 (accessed 10.02.2023) (In Russian).
Golovkin, M. A., Golovkin, V. A. & Kalyavin, V. M. Voprosy vikhrevoy gidrodinamiki [Problems of vortex hydrodynamics]. Moscow, Fizmatlit Publ., 2009. 263 p. Available at: https://biblioclub.ru/index.php?page=book&id=76681 (accessed 10.02.2023) (In Russian).
Bulanchuk, H. H., Bulanchuk, O. N. & Dovhyy, S. A. Metod diskretnykh vikhrevykh ramok so vstavkoy promezhutochnykh tochek na vikhrevoy pelene [Method of discrete vortex frames with insertion of intermediate points on the vortex sheet]. Visnyk Kharʹkovskoho natsionalʹnoho universytetu – Bulletin of Kharkiv National University, 2009, no. 853, pp. 37-46. (In Russian).
Chorin, A. J. Vortex models and boundary layer instability. SIAM J. Sci. Stat. Comput., 1980, vol. 1, no.1, pp. 1-21. Available at: https://math.berkeley.edu/~chorin/C80.pdf. (accessed 10.02.2023).
Ovcharov, M. M. Metodika rascheta nelineynykh aerodinamicheskikh kharakteristik letatel'nogo apparata pri nesimmetrichnom obtekanii [Method of calculation of nonlinear aerodynamic characteristics of aircraft at asymmetrical flowing around]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2012, no. 6(93), pp. 48-52. Available at: http://195.88.72.95:57772/csp/nauchportal/Arhiv/AKTT/2012/AKTT612/Ovcharov.pdf. (accessed 10.02.2023). (In Russian).
Gómes-Serrano, J., Park, J., Shi, J. & Yao, Y. Remarks on Stationary Uniformly-rotating Vortex Sheets: Rigidity Results. Commun. Math. Phys., 2021, vol. 386, pp. 1845-1879. DOI: 10.1007/s00220-021-04146-3.
Lukyanov, P. V. Diffuziya izolirovannogo kvazidvumernogo vikhrya v sloye stratifitsirovannoy zhidkosti [Vortex diffusion in a layer of viscous stratified fluid]. Prykladna hidromekhanika – Applied Hydromechanics, 2006, vol. 8(80), no. 3, pp. 63-77. Available at: http://hydromech.org.ua/content/pdf/ph/ph-08-3(63-77).pdf. (accessed 10.02.2023). (In Russian).
Luk‘yanov, P. V. Modelʹ kvazitochkovoho vykhoru [Model of Quasi-Point Vortex]. Naukovi visti NTUU KPI – Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 2011, no. 4 (78), pp. 139-142. Available at: https://ela.kpi.ua/handle/123456789/36756. (accessed 10.02.2023). (In Ukrainian).
Blyuss, B. O., Luk‘yanov, P. V. & Dzyuba, S. V. Modelyuvannya kvazitochkovoho turbulentnoho vykhoru v zakruchenykh techiyakh ridyny v zbahachuvalʹnomu ustatkuvanni [Simulation of quasi-point turbulent vortex in the swirling flows of fluids in the preparatory equipment]. Heotekhnichna mekhanika. Mizhvidomchiy Zbirnyk Naukovykh Pratsʹ – Geotechnical mechanics. Interdepartmental Collection of Scientific Works, Dnipro, 2018, no. 143, pp. 19-25. DOI: 10.15407/geotm2018.143.049. (In Ukrainian).
Luk‘yanov, P. V. Heneratsiya kompaktnoho turbulentnoho vykhora: nablyzhena modelʹ dlya vidnosno velykykh momentiv chasu [Compact Turbulent Vortex Generation Approximate Model for Relatevely large Time Moments]. Naukovi visti NTUU KPI – Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 2013, no. 4 (90), pp. 127-131. Available at: https://ela.kpi.ua/jspui/handle/123456789/7334. (accessed 10.02.2023). (In Ukrainian).
Luk'yanov, P. V. Universal'naya model' kompaktnogo vikhrya i yeyo primeneniye dlya kompaktnykh kvazivintovykh potokov [Universal model of compact vortex and the using of the model for compact quasi-helical fluxes]. Materialy XIII mizhnarodnoyi naukovo-tekhnichnoyi konferentsiyi AVIA-2017, 19-21 kvitnya 2017 r. – Materials of the XIII international scientific and technical conference AVIA-2017, April 19-21, 2017, Kyiv, 2017, vol. 1, pp. 7.16-7.21. Available at: http://avia.nau.edu.ua/doc/avia-2017/AVIA_2017.pdf. (accessed 10.02.2023). (In Russian).
Luk'yanov, P. V. Zastosuvannya teorem Helʹmholʹtsa ta Stoksa pro vykhorovu trubku dlya obhruntuvannya yiyi kompaktnosti [The using of Helmholz and Stokes theorems for vortex tube for it compactnees graunding]. Materialy XXII mizhnarodnoyi naukovo-tekhnichnoyi konferentsiyi FS PHP «Promyslova hidravlika i pnevmatyka», Kyyiv, 17-18 lystopada, Vinnytsya - Materials of the XXII international scientific and technical conference of FS PGP "Industrial hydraulics and pneumatics". Kyiv, November 17-18. Vinnytsia, «Hlobus-Pres» Publ., 2021, pp. 30-32. (In Ukrainian).
Luk'yanov, P. V. Inertsiyna stiykistʹ yak rezulʹtat spivvidnoshennya perenosnoho i vidnosnoho obertanʹ nestyslyvoyi ridyny [Inertial Stability as a Result of the Relation between Transport and Relative Fluid Rotation]. Naukovi visti NTTU «KPI» – Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 2014, no. 4(96), pp. 133-138. Available at: https://ela.kpi.ua/handle/123456789/9935. (accessed 10.02.2023). (In Ukrainian).
Burgers, J. M. A mathematical model illustrating the theory of turbulence. Advances in applied mechanics. 1948, vol. 1, pp. 171-199. DOI: 10.1016/S0065-2156(08)70100-5.
Rott, N. On the viscous core of a line vortex. Journal of Applied Mathematics and Physics (ZAMP), 1958, vol. 9, pp. 543-553. DOI: 10.1007/BF02424773.
Betyayev, S. K. Gidrodinamika: problemy i paradoksy [Hydrodynamics: problems and paradoxes]. Uspekhi fizicheskikh nauky – Advances in Physical Sciences, 1995, vol. 165, no. 3, pp. 299-330. (In Russian).
Gorshkov, K. A., Soustova, I. A., Sergeyev, D. A. Ob ustoychivosti vikhrevykh dorozhek v stratifitsirovannoy zhidkosti [On the stability of vortex streets in a stratified fluid]. Izvestiya RAN. Fizika atmosfery i okeana – News of the Russian Academy of Sciences. Atmospheric and Ocean Physics, 2007, vol. 43, no. 6, pp. 851-860. Available at: https://naukarus.com/ob-ustoychivosti-vihrevyh-dorozhek-v-stratifitsirovannoy-zhidkosti. (accessed 10.02.2023). (In Russian).
Loytsyanskiy, L. G. & Lur'ye, A. I. Kurs teoreticheskoy mekhaniki. T. 2. Dinamika [Theoretical Mechanics course. Vol. 2. Dynamics]. Moscow, Drofa Publ., 2006. 719 p. Available at: http://pdf.lib.vntu.edu.ua/books/2019/Loytsyanskiy_P_2_2006_719.pdf. (accessed 10.02.2023). (In Russian).
Loytsyanskiy, L. G. Mekhanika zhidkosti i gaza [Mechanics of liquid and gas]. 6-ye perer. i dop. Moscow, Nauka, Gl. red. fiz.-mat. lit. Publ., 1987. 840 p Available at: http://www.knigograd.com.ua/index.php?dispatch=products.view&product_id=70436. (accessed 10.02.2023). (In Russian).
Tyvand, P. A. Viscous Rankine vortices. Physics of Fluids, 2022, vol. 34, iss. 7, article no. 073603. DOI: 10.1063/5.0090143.
Horiuti, K. A classification method for vortex sheet and tube structures in turbulent flows. Physics of Fluids, 2001, no. 13, iss. 12, pp. 3756-3774. DOI: 10.1063/1.1410981.
Horiuti, K. & Takagi, Y. Identification method for vortex sheet structures in turbulent flows. Physics of Fluids, 2005, no. 17, iss. 12, article no. 121703. DOI: 10.1063/1.2147610.
Millionshchikov, M. D. Turbulentnye techeniya v pogranichnom sloe i v trubakh [Turbulent flows in boundary layer and in pipes]. Moscow, Nauka Publ., 1969. 52 p. (In Russian.)
Pellone, S., Di Stefano, C. A., Rasmus, A. M., Kuranz, C. C. & Johnsen, E. Vortex-sheet modeling of hydrodynamic instabilities produced by an oblique shock interacting with a perturbed interface in the HED regime. Phys. Plasmas, 2021, vol. 28, iss. 2, article no. 022303. DOI: 10.1063/5.0029247.
Bernard, P. S. A Vortex Method for Wall Bounded Turbulent Flows. Esaim: Proceedings, 1996, vol. 1, pp. 15-31. DOI: 10.1051/proc:1996002.
Lin, C. L., Kaminski, A. K. & Smyth, W. D. The effect of boundary proximity on Kelvin-Helmholtz instability and turbulence. J. Fluid Mech., 2023, vol. 966, pp. A2-1 – A2-27. DOI: 10.1017/jfm.2023.412.
Eldredge, J. D. & Jones, A. R. Leading-Edge Vortices: Mechanics and Modelling. Ann. Rev. Fluid Mech., 2019, vol. 51, pp. 75-104. DOI: 10.1146/annurev-fluid-010518-040334.
Rayleigh Lord. On the Dynamics of Revolving Fluids. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1917, vol. 93, no. 648, pp. 148-154. Available at: http://www.jstor.org/stable/93794. (accessed 10.02.2023).
Kloosterziel, R. C. & van Heijst, G. J. F. An experimental study of unstable barotropic vortices in a rotating fluid. Journal of Fluid Mechanics, 1991, vol. 223, pp. 1-24. DOI: 10.1017/S0022112091001301.
Reynolds, O. IV. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philosophical Transactions of the Royal Society of London (A), 1895, vol. 186, pp. 123-164. DOI: 10.1098/rsta.1895.0004.
Boussinesq, J. Essai sur la theorie des eaux courantes. Nabu Press, 2011. 778 p. Available at: https://www.amazon.co.jp/-/en/Joseph-Boussinesq/dp/1271798727. (accessed 10.02.2023) (in French).
Kiya, M. & Arie, M. Formation of Vortex Street in Laminar Boundary Layer. Journal of Applied Mechanics, 1980, vol. 47, iss. 2, pp. 227-233. DOI: 10.1115/1.3153647.
Aref, H. & van der Giessen, E. A bibliography of Vortex Dynamics 1858-1956. Advances in Applied Mechanics, 2007, vol. 41, pp. 197-292. DOI: 10.1016/S0065-2156(07)41003-1.
Beckers, M., Verzicco, R., Clercx, H. J. H. & Van Heijst, G. J. F. Dynamics of pancake-like vortices in a stratified fluid: experiments, model and numerical simulations. Journal of Fluid Mechanics, 2001, vol. 433, pp. 1-27. DOI: 10.1017/S0022112001003482.
Richardson, L. F. Atmospheric diffusion shown on a distance-neighbor graph. Proc. R. Soc. London. Ser. A, 1926, no. 110, iss. 756, pp. 709-737. DOI: 10.1098/rspa.1926.0043.
Garcia, C. Karman Vortex Street in incompressible fluid models. Nonlinearity, 2020, vol. 33, no. 4, article no. 1625. DOI: 10.1088/1361-6544/ab6309.
Stern, M. E. Horizontal Entraiment and Detraiment in Large-Scale Eddies. J. Phys. Ocean, 1987, vol. 17, no. 10, pp. 1688-1695. DOI: 10.1175/1520-0485(1987)017<1688:HEADIL>2.0.CO;2.
DOI: https://doi.org/10.32620/aktt.2023.5.01