Mathematical model of pneumatic launch system with effect of unmanned aerial vehicle, engine and propeller characteristics
Abstract
Keywords
Full Text:
PDF (Українська)References
Davis, R. L. Mechanical design and optimization of swarm-capable UAV launch systems. Thesis. Monterey, United States Naval Academy, 2015. 139 p.
Fahlstrom, P. G., Gleason, Th. J. & Sadraey, M. H. Introduction to UAV Systems. Hoboken, John Wiley & Sons, Ltd., 2022. 434 p.
Barnhart, R. K. Hottman, S. B. Marshall, D. M. & Shappee E. Introduction to Unmanned Aircraft Systems. Boca Raton, CRC Press, 2012. 194 p.
Austin, R. Unmanned Aircraft Systems. UAVs design, development and deployment. Chichester, John Wiley and Sons, Ltd., 2010. 332 p.
Kondratiuk, M. & Ambroziak, L. Design and Dynamics of Kinetic Launcher for Unmanned Aerial Vehicles. Applied Science, 2020, vol. 10. 13 p. DOI: 10.3390/app10082949.
Bumb, N., Kalogeropoulos, X., Kelday, A., Wai, Hou, L., Xiao L., Portakalcioglu, H., Tagg, J., Tarazi, B. Catapult launcher for Unmanned Air Vehicles (UAV). Part 2. Design case study. SESM2005: Engineering Design and Structural Analysis Methods, 2012. 86 p. Available at: https://dokumen.tips/ documents /catapult-launcher-for-uav.html?page=3 (accessed 20.04.2023).
Jastrzębski, G. Impact of opening time of the take-off pneumatic launcher main valve on take-off pressure losses. Journal of KONES Powertrain and Transport, 2016, vol. 23, no. 4, pp. 175-182.
UKRSPECSYSTEMS Releases New UAV Bungee Catapult Launcher. UAS Weekly, 2020. Available at: https://uasweekly.com/2020/11/22/ukrspecsystems-releases-new-uav-bungee-catapult-launcher/ (accessed 20.04.2023).
Thanghom, P., Pinyochon, J., Narathee, P., Weng, S. & Surangsee, S. Spring Drive UAV Launcher. Proceedings, 2019, vol. 39, iss. 2. 6 p. DOI: 10.3390/proceedings2019039002.
Miller, B., Valoria, Ch., Warnock, C. & Coutlee, J. Lightweight UAV. Launcher Senior Project for Aerojet‐Rocketdyne. Final Report. Saint Luis, California Polytechnic State University, 2014. 232 p.
Jurczyk, K. The prospect for the launcher of a mini unmanned aerial vehicle from an unmanned surface vehicle. Scientific Journal of Polish Naval Academy, 2018, vol. 1, iss. 212, pp. 5-26. DOI: 10.2478/sjpna-2018-0001.
Pneumatic UAV launcher GLS-1A. Ukrspecsystems Ukraine. AeroExpo, 2023. Available at: https://www.aeroexpo.online/prod/ukrspecsystems/product-185884-73131.html (accessed 20.04.2023).
Gan, L., Fang, X., Zhang, Zh., Chen, H. & Wei, X. Modular Clustering of UAV Launch System Architecture Based on HDDSM. Aerospace, 2022, vol. 9, iss. 168. 18 p. DOI: 10.3390/aerospace 9030168.
Grekov, V. P. & Tkachenko, Yu. A. Rozrakhunok odnostupinchatogo pnevmatychnogo tzilindra z vbudovanym resyverom yak pryvodu yazemnoi katapulty [Calculation of a single-stage pneumatic cylinder with a built-in receiver as a ground-based drive]. Weapon systems and military equipment, 2018, vol. 1, iss. 53, pp. 91-96. DOI: 10.30748/soivt.2018.53.13.
Jastrzebski, G. & Ułanowicz, L. Estimating the Useful Energy of a Launcher’s Pneumatic Launch System UAV. Energies, 2022, vol. 15, iss. 8424. 17 p. DOI: 10.3390/en15228424.
Komandyru pidrozdilu po zastosuvannyu BPAK taktychnogo rivnya (za dosvidom provedennya OOS (ranishe ATO) [To the commander of the unit for the use of tactical-level UAC (based on the experience of carrying out OOS (formerly ATO)]. Kyiv, "Center for educational literature", 2022. 66 p.
Teoriya i praktika zastosuvannya bezpilotnykh litalnykh aparativ [Theory and practice of using unmanned aerial vehicles (drones)]. Kyiv, "LITERA", 2023. 126 p.
Lemko, O. L. & Molodchik, A. D. Aerodina¬michni ta liotno-tekhnichni kharakterystyky perspektyvnogo bezpilotnogo litalnogo aparatu skhemy "litayuche krylo" [Aerodynamic and flight technical characteristics of the promising unmanned aerial vehicle of the "flying wing" scheme]. Mechanics of gyroscopic systems, 2015, vol. 29, pp. 44-52. DOI: 10.20535/0203-377129201567172.
Lippert, D. & Spektor, J. Rolling Resistance and Industrial Wheels. Hamilton White Paper. Hamilton, HamiltonCaster.com, 2020, No. 11. 7 p.
NSK Rolling Bearings. Cat. No. E1102m. – Tokio, NSK Ltd., 2013. 283 p.
Podsedkowski, M., Konopinski, R., Obidowski, D. & Koter, K. Variable Pitch Propeller for UAV-Experimental Tests. Energies, 2020, vol. 13, iss. 5264. 16 p. DOI: 10.3390/en13205264.
Stokkermans, T. C. A. Aerodynamics of propellers in interaction dominated flowfields. An application to novel aerospace vehicles. Dissertation for the purpose of obtaining the degree of doctor at Delft University of Technology. Delft, Delft University of Technology, 2020. 244 p.
Brandt, J. B., Deters, R. W., Ananda, G. K., Dantsker, O. D. & Selig, M. S. UIUC Propeller Data Site. Department of Aerospace Engineering. Available at: https://m-selig.ae.illinois.edu/props/propDB.html (accessed 20.04.2023).
Gill, R. & D’Andrea, R. Computationally Efficient Force and Moment Models for Propellers in UAV Forward Flight Applications. Drones, 2019, vol. 3, iss. 77. 47 p. DOI: 10.3390/drones 3040077.
Ercan, A. Analysis and design of a novel reciprocating compressor utilizing a minfas-tar mechanism. A Thesis submitted to the Graduate School of Natural and Applied Sciences of Middle East Technical University. Middle East Technical University, 2021. 198 p.
ldel'chik, E. Handbook of Hydraulic Resistance. Coefficients of Local Resistance and of Friction. Springfield, Israel Program for Scientific Translations Ltd., 1966. 517 p.
Lanlege, D. I., Kehinde, R., Sobanke, D. A. & Garba, U. M. Comparison of Euler and Range-Kutta methods in solving ordinary differential equations of order two and four. Leonardo Journal of Sciences, 2018, iss. 32, pp. 10-37.
DOI: https://doi.org/10.32620/aktt.2023.4sup1.06