Unsteady incompressible laminar boundary layer: time and space variable molecular viscosity

Pavlo Lukianov, Lin Song

Abstract


The subject of this work is two approaches to describe the laminar unsteady flow of an incompressible fluid in the boundary layer. In the first approach, the viscosity of the fluid and the acceleration with which the plane is set in motion are considered constant. In essence, this is Rayleigh's problem. The solution obtained on the basis of these assumptions asymptotically converges to the well-known self-similar Stokes solution. It is important that the solutions of Stokes and Rayleigh asymptotically at large values of time correspond to the disappearance of shear stresses between the liquid and moving plane after acceleration. A paradox emerges the equations derived by Stokes to describe internal friction indicate the absence of the same friction between a moving body and fluid. Since research using the calculus of variation methods revealed that the molecular viscosity inside the stationary boundary layer should depend on the distance to the moving surface, the corresponding non-steady problem was considered. As a result, as before for the steady case, solutions describing both non-gradient and gradient flows of incompressible fluid in the boundary layer are obtained. The asymptotic analysis of the transition to steady flow testifies the consistency of these solutions. For the case of non-gradient flow, a comparison of the classical solution with the solution corresponding to the extreme fluid flow rate carried by the moving surface is made. It is shown that according to the solution obtained on the basis of the calculus of variation approach, the shear stress on the surface does not disappear anywhere after the motion becomes steady but, as expected, acquires a constant value. The research methods are purely theoretical and the results are analyzed by comparison with available theoretical and experimental data and compliance with the fundamental laws of physics, in particular the law of conservation of energy. These methods are based on the construction of analytical mathematical models, which are differential equations in partial derivatives supplemented with appropriate physical initial and boundary conditions. In addition, Euler's differential equations for the extreme of functional theory are used (in this paper, this is the extreme of fluid flow rate across the cross-section of the boundary layer). When solving these equations, the well-known Fourier method of variable separation is used. Arbitrary functions of time arising during partial integration (by one of the variables – the spatial coordinate) are determined from the conditions of asymptotic convergence of the solutions of non-steady problems to the corresponding solutions of steady problems. Conclusions. The presented results are of fundamental importance for understanding the physics of the flow around aircraft parts, as they indicate the contradiction of the existing idea of the reversibility of direct and inverse problems: the motion of a body in a still fluid and the flow of a fluid around an immobile body.

Keywords


aircraft; laminar boundary layer; unsteady incompressible flow; variable molecular viscosity

Full Text:

PDF

References


Pavlyuchenko, A. M. & Shyyko, O. M. Kompleksnyy metod rozrakhunku oporu tertya i teploobminu na poverkhni lʹotnykh osesymetrychnykh obʺyektiv pry polʹoti po trayektoriyi z nayavnistyu v prystinnomu prykordonnomu shari neizotermichnosti, styslyvosti, laminarno-turbulentnoho perekhodu ta relaminarizatsiyi [Complex method for calculating the friction resistance and thermal refraction on the surface of flight axisymmetric objects on flight by trajectory with availability in the wall boundary layer non-isothermal, compressive, laminar-turbulent transition and relainarization]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2018, no. 1(145), pp. 4-28. DOI: DOI: 10.32620/aktt.2018.1.01.

Komarov, B. H., Zinchenko, D. M. & Andryeyev, O. M. Vplyv formy kryla na kharakterystyky pry vykorystanni intehrovanoyi rotornoyi sylovoyi ustanovky litaka [Influence of wing shape on characteristics of fan-wing aircraft power plant]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2023, no. 2(186), pp. 17-26. DOI: 10.32620/aktt.2023.2.02.

Usenko, V. Yu., Balalayeva, K. V. and Mitrakhovych, M. M. Modelyuvannya techiyi v spivvisnomu hvyntoventylyatori z upravlinnyam prymezhovym sharom [Flow simulation in a coaxial fan with boundary layer control]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2021, no. 4sup1(173), pp. 35-40. DOI: 10.32620/aktt.2021.4sup1.05.

Solovyov, O. V., Prusak, N. V. & Korbina, N. V. Struktura vikhrevykh sledov i ikh vozdeystviye na letatel'nyye apparaty [Wakes structure and their impact on aircraft]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2015, no. 3(120), pp. 41-49.

Stokes, G. G. On the theories of the internal friction of fluids in motion, and the equilibrium and motion of elastic solids. Trans. Cambridge Philos. Soc., 1845, vol. 8, pp. 287-305.

Stokes, G. G. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Philos. Soc., 1851, vol. 9, pp. 1-86.

Lukianov, P. V. and Song, L. Optimal character and different nature of flows in laminar boundary layers of incompressible fluid flow. Problems of friction and wear, 2022, no. 4(97), pp. 52-60. DOI: 10.18372/0370-2197.4(97).16959.

Lord Rayleigh. On the motion of solid bodies through viscous liquids. Phil. Mag., 1911, vol. 21, no. 6, pp. 697-711.

Gohrtler, H. Verdr angungswirkung der laminaren Grenwiderstand. Ingen. Arch., 1944, vol. 14, pp. 286-305.

Howarth, L. Rayleigh's problem for semi-infinite plate. Proc. Camb. Phil. Soc. 1950, vol. 46, pp. 127-140. DOI: 10.1017/S030500410002555x.

Sowersby, L. The unsteady motion of a solid of a viscous fluid inside an infinite channel. Phil. Mag., 1951, vol. 42 (7), pp. 176-187.

Sowersby, L. & Cooke, J. C. The flow of fluids along corners and edges. Quart. J. Mech. Appl. Math., 1953, vol. 6, iss. 1, pp. 50-70. DOI: 10.1093/QJMAM/6.1.50.

Watson, E. J. Boundary-layer growth. Proc. R. Soc. Lond. A, 1955, vol. 231, iss. 1184, pp. 104-116. DOI: 10.1098/rspa.1955.0159.

Van Overveld, T. J. J. M., Breugem, W. P., Clerx, H. J. H. & Duran-Matute, M. Effect of the Stokes boundary layer on the dynamics of particle pairs in an oscillating flow. Physics of Fluids, 2022, vol. 34, iss. 11, article no. 113306. DOI: 10.1063/5.0115487.

Schlichting, H. & Gersten, K. Boundary-Layer Theory, 9th ed. Spriger-Verlag Publ., 2017. 805 p.

Dhawan, S. Direct Measurements of Skin Friction. Diss. (Ph.D.), California Institute of Technology. 1951. 76 p. DOI: 10.7907/1S03-8631.

Prandtl, L. Uber Flussigkeitsbewegung bei sehr kleiner Reibung. Verhandlung d. III Untern. Math. Kongr. Heidelberg, Germany, 1904, pp. 484-491.

Blasius, H. Grenzschichten in Flussigkeiten mit kleiner Reibung. Z. Math. Phys., 1908, vol. 56, pp. 1-37.

Anuar, I., Roslinda, N. & Ioan, P. Dual Solutions of the Extended Blasius Problem. Mathematics, 2009, vol. 25, no. 2, pp. 107-111.

Boltze, E. Grenzschichten an Rotationskörpern in Flüssigkeiten mit kleiner Reibung. Göttingen, 1908. 60 p. Available at: http://books.google.com/books?id=1icFAAAAMAAJ&oe=UTF-8 (accessed 12.02.2023)

Von Kármán, Th. V. Über laminare und turbulente Reibung. Zeitschrift für Angewandte Mathematik und Mechanik, 1921, vol. 1, pp. 233-252. DOI: 10.1002/zamm.19210010401.

Pohlhausen, K. Zur Waherungsweisen Integration der Laminaren. Reibungsschicht Zeitschrift für Angewandte Mathematik und Mechanik, 1921, vol. 1, iss. 4, pp. 252-290. DOI: 10.1002/zamm.19210010402.

Van Driest, E. R. On Turbulent Flow Near a Wall. Journal of Aeronautical Science, 1956, vol. 23, iss. 11, pp. 1007-1011. DOI: 10.2514/8.3713.

Loitsianski, L. G. The development of boundary layer theory in the USSR. Ann. Rev. fluid. Mech. 1970, vol. 2, pp. 1-15.

Weyburne, D. W. A mathematical description of the fluid boundary layer. Applied Mathematics and Computation, 2006, vol. 175, iss. 2, pp. 1675-1684. DOI: 10.1016/j.amc.2005.09.012.

Weyburne, D. W. New thickness and shape parameters for the boundary layer velocity profile. Experimental Thermal and Fluid Science, 2014, vol. 54, pp. 22-28. DOI: 10.1016/j.expthermflusci.2014.01.008.

Sohrab, S. H. A Modified Theory of Turbulent Flow over a Flat Plate. Proc. Of the 5th IASME /WSEAS Conference of Fluid Mechanics and Aerodynamics. Athens, Greece, August 25-27, 2007. 10 p.

Abdul-Ghafour, Q. A. A general velocity profile foe a laminar boundary layer over a flat plate with zero incidence. Journal of Engineering, 2011, vol. 17. iss. 6, pp. 1614-1621.

Zhariy, O. Yu. & Ulytko, A. F. Vvedenye v mekhanyku nestatsyonarnykh kolebanyy y voln [Introduction to the mechanics of non-stationary oscillations and waves]. Kyiv, Vyshcha shkola, Publ., 1989. 184 p.

Maupertuis, P. L. M. Accord de differentes loix de la nature qui avoient jusqu'ici couple impomptables. Memoires de l'Academie Royale des Sciences de Paris, 1744, April 15, pp. 417-426.

Bretheim, J. U., Meneveau, C. & Gayme, D. F. Standard logarithmic mean velocity distribution in a band-limited restricted model of turbulent flow in a half-channel. Phys. Fluids, 2015, vol. 27, iss. 1, article no. 011702. DOI: 10.1063/1.4906987.

Mofakham, A. A. & Ahmadi, G. Particles dispersion and deposition in homogeneous turbulent flows using continuous random walk models. Phys. Fluids, 2019, vol. 31, iss. 8, article no. 083301. DOI: 10.1063/1.5095629.

Mandre, S. Brachistochronous motion of a flat plate parallel to its surface immersed in a fluid. J. Fluid Mech., 2022, vol. 939, article no. A27. DOI: 10.1017/jfm.2022.217.




DOI: https://doi.org/10.32620/aktt.2023.3.06