Development of a digital twin of filling the tank with a gas mixture

Vadim Garin, Denys Tkachenko, Olga Shypul, Sergiy Zaklinskyy, Oleg Tryfonov, Sergiy Plankovskyy

Abstract


The research subject is a digital twin of the process of filling the tank with gas mixture components. The aim is to justified choose the digital twin model of the tank filling process with a gas mixture. The task of the study consists of the analysis of construction methods and the operation modes of the digital twin as well as selecting the operation settings of the digital twin model, which ensure a rational reproduction of the gas-dynamic non-stationary of the tank filling process with a component of the gas mixture. The following results were obtained. In accordance with the digitalization concept of modern production, the need to build digital twins for individual physical and chemical processes is substantiated in relation to the researched thermal pulse processing technology. The specifics of the operation of the fuel mixture generator using the critical hole method are determined and the corresponding defining equations for the dosing of gas mixture components and the tank filling time are given for constructing a control system using a digital twin of the process. Existing methods of building digital twins similar to the system under study are analyzed. For further use in the structure of a digital twin of a separate tank filling subsystem, a component of the gas mixture, a finite-element model of gas-dynamic unsteady flow was built and a numerical study was conducted using the ANSYS Fluent software. The dependence on the tank filling time of such basic parameters of the process under study as pressure, temperature, and filled mass of the gas mixture was determined. Reasoned feasibility and developed reduced-order model (ROM model ANSYS Fluent) and used in ANSYS Twin Builder to build a digital twin. Developed and analyzed examples of digital twins of the system of filling the tank with a gas mixture using standard elements of the Twin Builder and Modelica libraries.

Keywords


digital twin; reduced-order model; numerical simulation; thermal pulse finishing treatment

References


Ramachandran, N., Pande, S. S. Ramakrishnan, N. The role of deburring in manufacturing: a state-of-the-art survey. Journal of Materials Processing Technology, 1994, vol. 44, iss. 1-2, pp. 1–13. DOI: 10.1016/0924-0136(94)90033-7.

Biermann, D., Heilmann, M. Burr minimization strategies in machining operations. Burrs – Analysis, Control and Removal, Springer, Berlin, Heidelberg, 2010, pp. 13–20. DOI: 10.1007/978-3-642-00568-8_2.

Jin, S. Y., Pramanik, A., Basak, A. K., Prakash, C., Shankar, S., Debnath, S. Burr formation and its treatments – a review. The International Journal of Advanced Manufacturing Technology, 2020, vol. 107, iss. 5-6, pp. 2189–2210. DOI: 10.1007/s00170-020-05203-2.

Obeidi, M. A., McCarthy, E., Ahad, I. Ul, Brabazon, D. Improving the surface finish and other properties of engineering metal parts. Key Engineering Materials, 2019, vol. 813, pp. 197–202. DOI: 10.4028/www.scientific.net/KEM.813.197.

Shipul’, O. V. Sovremennye metody finishnoi otdelki kromok pretsizionnykh detalei [Modern methods of edge finishing of precision parts]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2015, no. 4 (121), pp. 16–25.

Plankovskyy, S., Popov, V., Shypul, O., Tsegelnyk, Y., Tryfonov, O., Brega, D. Advanced thermal energy method for finishing precision parts. Advanced Machining and Finishing Handbooks in Advanced Manufacturing, 2021, Chapter 15, pp. 527–575. DOI: 10.1016/C2018-0-00908-1.

Plankovskyy, S. Rozroblennya avtomatyzo¬vanoho kompleksu dlya pretsyziynoho termoimpul'snoho obroblennya detonuval'nymy hazovymy sumishamy: naukovi materialy : monohrafiya [Development of an automated complex for precision thermal pulse processing with detonating gas mixtures: scientific materials : monograph]. Kharkiv, Nats. aerokosm. un-t im. M. Ye. Zhukovs'koho «Kharkiv. aviats. in-t», 2020. 318 p.

Xu, L. D., Xu, E. L., Li, L. Industry 4.0: state of the art and future trends. International Journal of Production Research, 2018, vol. 56, iss. 8, pp. 2941–2962. DOI:10.1080/00207543.2018.1444806.

Mubarak, M. F., Petraite, M. Industry 4.0 technologies, digital trust and technological orientation: What matters in open innovation? Technological Forecasting and Social Change, 2020, no. 161, article no. 120332. DOI: 10.1016/j.techfore.2020.120332.

Reed, S., Löfstrand, M., Andrews, J. Modelling cycle for simulation digital twins. Manufacturing Letters, 2021, vol. 28, pp. 54–58. DOI: 10.1016/j.mfglet.2021.04.004.

Qinglin, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L., Nee, A. Y. C. Enabling technologies and tools for digital twin. Journal of Manufacturing Systems, 2021, vol. 58 (B), pp. 3–21. DOI: 10.1016/j.jmsy.2019.10.001.

Cimino, C., Negri, E., Fumagalli, L. Review of digital twin applications in manufacturing. Computers in Industry, 2019, no. 113, pp. 1–15. DOI: 10.1016/j.compind.2019.103130.

Sinner, P., Daume, S., Herwig, C., Kager, J. Usage of Digital Twins Along a Typical Process Development Cycle. Advances in Biochemical Engineering Biotechnology, 2021, no. 176, pp. 71–96. DOI: 10.1007/10_2020_149.

Brovkova, M., Molodtsov, V., Bushuev, V. Implementation specifics and application potential of digital twins of technological systems. The International Journal of Advanced Manufacturing Technology, 2021, vol. 117, pp. 2279–2286. DOI: 10.1007/s00170-021-07141-z.

Kritzinger, W., Karner, M., Traar, G., Henjes, J. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 2018, vol. 51-11, pp. 1016–1022. DOI: 10.1016/J.IFACOL.2018.08.474.

Sӧderberg, R., Wӓrmefjord, Kr., Carlson, J. S., Linkvist, L. Toward a Digital Twin for real-time geometry assurance in individualized production. Manufacturing Technology, 2017, vol. 66, iss. 1, pp. 137–140. DOI: 10.1016/j.cirp.2017.04.038.

Robles, J., Baca, G., Chong, J., Gonzales, S. Nonsingular Terminal Sliding Mode Control for a Variable Speed Wind Turbine System using Face Mock-Up Interface co-simulation. Proc. 11th International Conference on Power, Energy and Electrical Engineering, 2021, pp. 158-164. DOI: 10.1109/CPEEE51686.2021.9383360.

Nauri, I. M., Ihwanudin, M. et al. Development of integrated hardware-in-the-loop (hil) test bench anti-lock brake system (abs) instrument. Journal of Physics: Conference Series, 2020, vol. 1700, article no. 012097. DOI: 10.1088/1742-6596/1700/1/012097.

Plankovskyy, S. I., Shypul', O. V., Zaklinskyy, S. O., Tsegelnyk, Y. V., Kombarov, V. V., Tevzadze, G. S., Garin, V. O. Sposіb prigotuvannya gazovoї sumіshі zadanogo skladu [The method of preparing a gas mixture of a given composition]. Patent UA, no. 146262, 2021.

Plankovskyy, S. I., Shypul', O. V., Tryfonov, O. V., Zaklinskyy, S. O., Tevzadze, G. S. Sposіb generaciyi gazovoї sumіshі [The method of generating a gas mixture]. Patent UA, no. 125380, 2022.

Plankovskyy, S. I., Shypul, O. V., Zaklinskyy, S. A., Dynamic method of gas mixtures creation for plasma technologies. Problems of atomic science and technology. Series: Plasma Physics, 2018, no. 5 (117), pp. 10–14.

ANSYS Fluent Reference Guide. Available at: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/prod_page.html?pn=Fluent&pid=Fluent〈=en (accessed 14.02.2022).

Shypul, O., Plankovskyy, S., Zaklinskyy, S., Pavlenko, O., Garin, V. Determination of the mass of gas in a reservoir at filling with a mixture component under the pressure. Lecture Notes in Networks and Systems, 2022, vol. 367, pp. 166–177. DOI: 10.1007/978-3-030-94259-5_16.

ANSYS Twin Builder Reference Guide. Available at: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/prod_page.html?pn=Twin%20Builder&pid=TwinBuilder〈=en (accessed 14.02.2022).




DOI: https://doi.org/10.32620/aktt.2022.5.03