Influence analysis of the method of supply of ignition device hot gases on the combustion chamber start with the help of three-dimensional computer simulation

Serhii Yevsieiev

Abstract


This paper presents the results of a numerical simulation of the gas flow in the flame tube of an annular combustion chamber of a gas turbine engine. Numerical simulation was performed in the ANSYS Fluent 2022 R1 computational complex, in which the numerical solution of the Reynolds-averaged Navier-Stokes equations (RANS) was implemented, the dissipation rates were determined using the Enhanced Wall Treatment near-wall function. For numerical simulation problems, a computational polyhedral mesh was built. The purpose of the calculations was to evaluate the effect of the method for supplying igniter hot gases to the start of the combustion chamber. The article does not address the operation of the igniter itself (its ignition, combustion, and the flow in it), but only its main task is the generation of a flame (gas) with a given temperature. All calculations were carried out for two gas temperatures, 800 and 1200 °C, at the outlet of the igniter nozzle, and a temperature of minus 20 °C at the inlet to the combustion chamber. In the calculation model, at the inlet to the igniter nozzle, the gas flow rate was set with a temperature taken from the experiment. When the chamber operates in the region of low temperatures, low velocities and pressures at the inlet, the degree of fuel evaporation and the mixing of its vapors with air have a significant effect. Therefore, with an increase in air flow through the chamber, the limits of flame blow-off expand. With a further increase in air flow, the processes of fuel evaporation and its burnout in the reverse current zone are completed, and flameout is mainly determined only by the temperature in the reverse current zone, and the boundaries of stable combustion narrow with increasing flow rate, which is typical for combusting a homogeneous mixture. The calculations found that the penetration and spread of heat when using igniter nozzles with a large diameter (12 mm) in the outlet section are higher than those in holes with a smaller diameter (8 mm). In the variants where the supply of hot gases is in the plane of the nozzle, a better distribution of heat in the zone of reverse currents is shown than where the supply of hot gases is carried out between the nozzles. Also, to analyze the results of the calculation, a criterion was proposed that shows the optimal conditions for the ignition of the mixture.

Keywords


igniter; ignition; reverse flow zone; the combustion chamber; engine start; turbulence model; gas turbine engine; computer simulation; ANSYS Fluent

References


Gosman, A. D., Loannides, E. Aspects of com-puter simulation of liquid-fueled combustors. Journal of Energy, 1983, vol. 7, no. 6, pp. 482–490. DOI: 10.2514/3.62687.

Al-Hamdan, Q. Z., Ebaid, M. S. Modeling and simulation of a gas turbine engine for power generation. Journal of Engineering for Gas Turbines and Power, 2006, vol. 128, iss. 2, pp. 302–311. DOI: 10.1115/1.2061287.

Camporeale, S. M., Fortunato, B., Mastrovi-to, M. A modular code for real time dynamic simulation of gas turbines in simulink. Journal of Engineering for Gas Turbines and Power, 2006, vol. 128, iss. 3, pp. 506–517. DOI: 10.1115/1.2132383.

Yevsieiev, S., Kozel, D., Kravchenko, I. Increasing Accuracy of the Gas Temperatures Pattern Calculation for GTE Combustor Using CFD. Integrated Computer Technologies in Mechanical Engineering – 2020, vol. 188. pp. 440-450. DOI: 10.1007/978-3-030-66717-7_37.

Kostyuk, V. E., Kirilash, E. I., Konoplenko, A. A. Analiz tochnosti chislennykh otsenok perepada davleniya na ZhT, raspredeleniya raskhoda vozdukha po otverstiyam ZhT, koeffitsientov raskhoda otverstii ZhT i neravnomernosti polya temperatur na vykhode KS, dostignutoi drugimi avtorami, a takzhe ispol'zovannykh imi metodicheskikh priemov. Vypolnenie testovykh chislennykh raschetov koeffitsienta raskhoda otverstiya v tonkoi stenke na setkakh s razlichnym razresheniem i analiz ikh tochnosti. Formirovanie vyvodov i gipotez: Rabochie materialy etapa № 1. TS № 65 ot 28.12.2009 [An analysis of the accuracy of numerical estimates of the pressure difference across the flame tube, the distribution of air flow over the openings of the flame tube, the flow coefficients of the openings of the flame tube, and the unevenness of the temperature field at the exit of the combustion chamber, achieved by other authors, as well as the methods used by them. Test numerical calculations of the flow coefficient of the hole in the thin wall on grids with different resolutions and analysis of their accuracy. Formation of conclusions and hypotheses: Working materials of stage No. 1. Technical information No. 65 of 12.28.2009]. Kharkov, 2009. 159 p.

Averin, S. I., Minaev, A. N., Shvydkii, V. S., Yaroshenko, Yu. G. Mekhanika zhidkosti i gaza [Fluid and gas mechanics]. Moscow, Metallurgy Publ., 1987. 304 p.




DOI: https://doi.org/10.32620/aktt.2022.4sup1.10