Modular autonomous automatic recorder of parameters of thermal pulse processing

Oleksiy Pavlenko, Yevhen Aksonov, Olga Shypul, Sergey Zaklinskyy

Abstract


The subject of the study is the technical and software methods for constructing digital twins of high-speed processes in a closed working chamber of a thermal pulse machine during the finishing of parts. This work develops a universal modular autonomous device that automatically records the temperature of gases, their pressure, the speed of passage of shock waves and other parameters that directly affect the surface of parts. Research objectives: determine the shape and dimensions of the body of the recording device, assign the location of sensors on it, and develop software and hardware complex for controlling the process of measuring and recording operating parameters for their further use in the work of the digital twin of the process. Because of the work carried out, it was found that the most suitable form for the recorder is an octagonal prism, consisting of parts of only two standard sizes - an octagonal end and prismatic side walls. Parts of the same type are interchangeable. The body shape allows the recorder to be installed in the working chamber vertically, horizontally and rotated with a fixed step of 15° around the longitudinal axis. Depending on the plan of the experiment, the necessary number of sensors of the corresponding type is installed on the walls of the recorder housing in certain places. Since the parts are interchangeable, it is possible to form sets of additional modules with sensors for various purposes and quickly change them during experimental studies. Specialized autonomous non-volatile software and hardware complex has also been developed, which, in the conditions of a limited volume of the internal space of the recorder, automatically starts collecting information from sensors, its primary transformation, and saving the results of the experiment. to an internal permanent storage device and transfer them to a personal computer for further use in the chain of work of the digital twin of the process.

Keywords


process digital twin; autonomous recorder of parameters; automatic measurements; thermal pulse processing

References


Benedict, G. F. Thermal energy method: deburring (TEM). Nontraditional Manufacturing Processes, CRC Press Publ., Boca Raton, 2017, pp. 349–361. DOI: 10.1201/9780203745410-22.

Jin, S. Y., Pramanik, A., Basak, A. K., Prakash, C., Shankar, S., Debnath, S. Burr formation and its treatments – a review. The International Journal of Advanced Manufacturing Technology, 2020, vol. 107, no. 5-6, pp. 2189–2210. DOI: 10.1007/s00170-020-05203-2.

Extrude Hone GmbH: T-series thermal deburring machines. Available at: https://extrudehone.com/t-series-thermal-deburring-machines. (accessed 12.03.2022).

Plankovskyy, S., Popov, V., Shypul, O., Tsegelnyk, Y., Tryfonov, O., Brega, D. Advanced thermal energy method for finishing precision parts. Advanced Machining and Finishing Handbooks in Advanced Manufacturing, 2021, Chapter 15, pp. 527-575. DOI: 10.1016/C2018-0-00908-1.

Bhattacharyya, B., Doloi, B. Advanced finishing processes. Modern Machining Technology, Academic Press Publ., London, 2020, pp. 675–743. DOI: 10.1016/B978-0-12-812894-7.00008-6.

Jeong, Y. H., HanYoo, B., Lee, H. U., Min, B. K., Cho, D. W., Lee, S. J. Deburring microfeatures using micro-EDM. Journal of Materials Processing Technology, 2009, vol. 209, no. 14, pp. 5399–5406. DOI: 10.1016/j.jmatprotec.2009.04.021.

Lee, S. H., Dornfeld, D. A. Precision laser deburring. Journal of Manufacturing Science and Engineering, 2001, vol. 123, no. 4, pp. 601–608. DOI: 10.1115/1.1381007.

Plankovskyy, S., Teodorczyk, A., Shypul, O., Tryfonov, O., Brega, D. Determination of detonable gas mixture heat fluxes at thermal deburring. Acta Polytechnica, 2019, vol. 59, no. 2, pp. 162–169. DOI: 10.14311/AP.2019.59.0162.

Zoeteweij, M. L., Van der Donck, J. C. J., Versluis, R. Particle removal in linear shear flow: model prediction and experimental validation. Journal of Adhesion Science and Technology, 2009, vol. 23, no. 6, pp. 899–911. DOI: 10.1163/156856109X411247.

Fritz, A., Sekol, L., Koroskenyi, J., Walch, B., Minear, J., Fernandez, V., Liu, L. Experimental analysis of thermal energy deburring process by design of experiment Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition. Houston, Texas, USA, 2012, vol. 3, pp. 2035–2041. DOI: 10.1115/imece2012-88411.

Plankovskyy, S. I. (eds.) Rozroblennya avtomatyzovanoho kompleksu dlya pretsyziynoho termoimpul'snoho obroblennya detonuval'nymy hazovymy sumishamy: naukovi materialy : monohrafiya. Kharkiv, Nats. aerokosm. un-t im. M. Ye. Zhukovs'koho «Kharkiv. aviats. in-t» Publ., 2020. 318 p.

Tryfonov, O. V. Metod naznachenyya rezhymov termoympul'snoy obrabotky detonyruyushchymy hazovymy smesyamy v yntehryrovannykh CAD/CAE-systemakh. Dys. kand. tekhn. Nauk. Kharkiv, 2013. 152 p.

Palazyuk, Ye. S. Metod pryznachennya rezhymiv termoimpul'snoho obroblennya detaley HTD iz zharomitsnykh splaviv za kvalimetrychnym pokaznykom kromky. Dys. Kand. tekhn. nauk [Method for operating conditions assignment of ther-mal pulse deburring of GTE parts made from heat-resistant alloys by the edge qualimetric parameters. Cand. Tekhn. Nauk. Dys.]. Kharkiv, 2019. 183 p.

Model 113B. High frequency Integrated Circuit Piezoelectric (ICP®) pressure sensor PCB Piezotronics, Inc. Available at: https://www.pcb.com/products?m=113b21. (accessed 12.03.2022).

AD8555. Zero-Drift, Digitally Programmable Sensor Signal Amplifier. Available at: https://analog.com/media/en/technical-documentation/data-sheets/AD8555.pdf. (accessed 12.03.2022).

AD7683. 16-Bit, 100 kSPS, Single-Ended PulSAR ADC. Available at: https://analog.com/media/en/technical-documentation/data-sheets/AD7683.pdf. (accessed 12.03.2022).

Aksonov, Y., Kombarov, V., Fojtů, O., Sorokin, V., Kryzhyvets, Y. Investigation of processes in high-speed equipment using CNC capabilities. Modern Machinery (MM) Science Journal, sp. iss. on HSM2019, pp. 3271–3276. DOI: 10.17973/MMSJ.2019_11_2019081.

Aksonov, Y., Kombarov, V., Tsegelnyk, Y., Plankovskyy, S., Fojtù, O., Piddubna, L. Visualization and analysis of technological systems experimental operating results. Proc. 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT). Lviv, Ukraine, 2021, vol. 2, pp. 141–146. DOI: 10.1109/CSIT52700.2021.9648592.




DOI: https://doi.org/10.32620/aktt.2022.4.08