Signal processing algorithm for helicopter wideband noise non-coherent radar altimeter

Валерій Костянтинович Волосюк, Володимир Володимирович Павліков, Семен Сергійович Жила, Едуард Олексійович Церне, Олексій Володимирович Одокієнко, Андрій Павлович Дьомін, Андрій Михайлович Гуменний, Анатолій Владиславович Попов

Abstract


The algorithm for a helicopter or an unmanned aerial vehicle flight altitude measuring based on the processing of broadband and ultra-wideband pulsed stochastic signals has been synthesized for the first time by the maximum likelihood method. When formulating the initial data, mathematical models of the probing signal and the received observation are given, taking into account both various options for input path implementation, which impose restrictions on the observation equation form, and the geometry of the problem. When solving the problem, the statistical characteristics of the given models were found and studied. The calculated observation correlation function contains information about both the signal delay time and the radio pulse envelope, which makes it possible to obtain the algorithm for desired altitude parameter determining by one of two ways: differentiating the likelihood functional by the delay time or by the radio pulse envelope. At the same time, for the first time, the inversion equation for the statistical characteristics of the studied non-stationary processes in the frequency domain has been obtained. Such processes arise due to the presence of a radio pulse envelope. An important feature of the solved synthesis problem is a noise pulse transmitter use that implements the function of the underlying surface sounding, as well as taking into account the fact of the signal structure destruction during its radiation, propagation and reflection. Such a destruction of the signal shape doesn’t make it impossible to synthesize a radar with internal coherent processing algorithms when working on one receiving antenna and requires the search for other signal processing options. The use of a non-deterministic signal in the system also complicates the formalization of the delay time parameter in the likelihood function, since in this case the reference signal cannot be represented as a model or an analytical equation. Following the synthesized algorithm, a simulation model of a pulsed radar with a stochastic probing signal has developed and the results of its modeling are presented. The obtained output effect of the system fully corresponds to the classical theoretical calculations.

Keywords


helicopter radar altimeter; broadband stochastic signals; highly efficient signal processing algorithm; radar altimeter

References


Kai, L., Jun-Jie, L., Jing, W. and Xiao-Jun, W. Research on Augmented Reality Technology of Helicopter Aided Navigation Based on Lidar. 2021 IEEE 7th International Conference on Virtual Reality (ICVR), 2021, pp. 373-379. DOI: 10.1109/ICVR51878.2021.9483859.

Zhao, J., Li, Y., Hu, D., and Pei, Z. Design on altitude control system of quad rotor based on laser radar. 2016 IEEE International Conference on Aircraft Utility Systems (AUS), 2016, pp. 105-109. DOI: 10.1109/AUS.2016.7748029.

Brockers, R. Autonomous Safe Landing Site Detection for a Future Mars Science Helicopter. 2021 IEEE Aerospace Conference (50100), 2021, pp. 1-8. DOI: 10.1109/AERO50100.2021.9438289.

Rahman, A. M., Hossain, S, Tuku, I. J., Hossam-E-Haider, M. and Amin, M. S. Feasibility study of GSM network for tracking low altitude helicopter. 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), 2016, pp. 1-5. DOI: 10.1109/CEEICT.2016.7873158.

Videmsek, A., Uijt de Haag, M. and Bleakley, T. Evaluation of RADAR altimeter-aided GPS for precision approach using flight test data. Digital Avionics Systems Conference (DASC), 2019, pp. 1-10. DOI: 10.1109/DASC43569.2019.9081778.

Zheng, J., Liu, B., Meng, Z. and Zhou, Y. Integrated real time obstacle avoidance algorithm based on fuzzy logic and L1 control algorithm for unmanned helicopter. 2018 Chinese Control And Decision Conference (CCDC), 2018, pp. 1865-1870. DOI: 10.1109/CCDC.2018.8407430.

Liu, B., Meng, Z. and Zhou, Y. Nonlinear path following for unmanned helicopter. IEEE International Conference on Information and Automation, 2017, pp. 737-743. DOI: 10.1109/ICInfA.2017.8079003.

IEEE Standard for Radar Definitions. IEEE Std 686-2017, 2017, pp. 1-54. DOI: 10.1109/IEEESTD.2017.8048479.

Madhupriya, G., Lavanya, K. S., Vennisa, V. and Raajan, N. R. Implementation of Compressed Wave Pulsed Radar Altimeter in Signal Processing. 2019 International Conference on Computer Communication and Informatics (ICCCI), 2019, pp. 1-5. DOI: 10.1109/ICCCI.2019.8821863.

Li, Y., Hoogeboom, P., Dekker, P. L., Mok, S. H., Guo, J. and Buck, C. CubeSat Altimeter Constellation Systems: Performance Analysis and Methodology. IEEE Transactions on Geoscience and Remote Sensing, 2022, vol. 60, pp. 1-19. DOI: 10.1109/TGRS.2021.3100850.

Mogyla, A. and Kantsedal, V. Estimation of the Parameters of the Stochastic Probing Radio Signal Reflected by the Target. 2020 IEEE Ukrainian Microwave Week (UkrMW), 2020, pp. 379-383. DOI: 10.1109/UkrMW49653.2020.9252819.

Ravenscroft, B., Blunt, S. D., Allen, C., Martone, A. and Sherbondy, K. Analysis of spectral notching in FM noise radar using measured interference. International Conference on Radar Systems (Radar 2017), 2017, pp. 1-6. DOI: 10.1049/cp.2017.0388.

Wasserzier, C., Wojaczek, P., Cristallini, D., Worms J. and O’Hagan, D. Doppler-Spread Clutter Suppression in Single-Channel Noise Radar. 2019 International Radar Conference (RADAR 2019), 2019, pp. 1-4. DOI: 10.1109/RADAR41533.2019.171219.

Ostroumov, I. Kuzmenko, N., Sushchenko, O., Pavlikov, V., Zhyla, S., Solomentsev, O., Zaliskyi, M. et al. Modelling and simulation of DME navigation global service volume. Advances in Space Research, 2021, vol. 68, no. 8, pp. 3495-3507. DOI: 10.1016/j.asr.2021.06.027.

Tarchi, D., Lukin, K., Fortuny-Guasch, J., Mogyla, A., Vyplavin, P. and Sieber, A. SAR Imaging with Noise Radar. IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 3, pp. 1214-1225. DOI: 10.1109/TAES.2010.5545184.

Pavlikov, V., Belousov, K., Zhyla, S., Tserne, E., Shmatko, O., Sobkolov, A., Vlasenko, D., Kosharskyi, V., Odokiienko, O. and Ruzhentsev, M. Radar imaging complex with SAR and ASR for aerospace vehicle. Radioelectronic and Computer Systems, 2021, no. 3, pp. 64-78. DOI: 10.32620/reks.2021.3.06.

Pavlikov, V., Volosyuk, V., Zhyla, S., Tserne, E., Shmatko, O. and Sobkolov A. Active-Passive Radar for Radar Imaging from Aerospace Carriers. 19th International Conference on Smart Technologies (EUROCON 2021), 2021, pp. 18-24. DOI: 10.1109/EUROCON52738.2021.9535619.

Pavlikov, V., Volosyuk, V., Zhyla, S., Van, H. N. and Van, K. N. UWB active aperture synthesis radar the operating principle and development of the radar block diagram. 2017 IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS), 2017, pp. 27-30. DOI: 10.1109/MRRS.2017.8075018.

Volosyuk, V. K., Kravchenko, V. F. Statisticheskaya teoriya radiotekhnicheskikh sistem distantsionnogo zondirovaniya i radiolokatsii [Statistical Theory of Radio-Engineering Systems of Remote Sensing and Radar]. Moscow, Fizmatlit Publ., 2008. 704 p.

Arslan, S. and Yıldırım, B. S. Broadband Microwave Noise Generator Using Zener Diodes and a New Technique for Generating White Noise. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 4, pp. 329-331. DOI: 10.1109/LMWC.2018.2808422.

Drechsel, T., Joram, N., Ellinger, F. A 6–15 GHz ultra-wideband signal generator with 82 % continuous tuning range for FMCW radar. 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), 2019, pp. 93-96. DOI: 10.1109/PRIME.2019.8787826.

Pritsker, D., Cheung, C., Neoh, H. S. and Nash, G. Wideband Programmable Gaussian Noise Generator on FPGA. 2019 IEEE National Aerospace and Electronics Conference (NAECON), 2019, pp. 412-415. DOI: 10.1109/NAECON46414.2019.9058065.

Hugler, P., Driemeyer, B., Chaloun, T. and Waldschmidt, C. 122 GHz Monostatic Radar Altimeter for Automated UAV Landing. 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), 2018, pp. 161-164. DOI: 10.1109/ICEAA.2018.8520430.

Ma, S., Zhang, J., Wu, T. and Ren, J. A 35 GHz mm-Wave Pulse Radar with Pulse Width Modulated by SDM Realizing Sub-mm Resolution for 3D Imaging System. 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018, pp. 261-263. DOI: 10.1109/RFIC.2018.8429013.

Kravchenko, V. F., Kutuza, B. G., Volosyuk, V. K., Pavlikov, V. V. and Zhyla, S. S. Super-resolution SAR imaging: Optimal algorithm synthesis and simulation results. 2017 Progress In Electromagnetics Research Symposium (PIERS), 2017, pp. 419-425. DOI: 10.1109/PIERS.2017.8261776.

Pavlikov, V. V., Volosyuk, V. K., Zhyla, S. S. and Huu, V.N. Active Aperture Synthesis Radar for High Spatial Resolution Imaging. 2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS), 2018, pp. 252-255. DOI: 10.1109/UWBUSIS.2018.8520021.

Astola, J. T. et al. Application of Bispectrum Estimation for Time-Frequency Analysis of Ground Surveillance Doppler Radar Echo Signals. IEEE Transactions on Instrumentation and Measurement, 2008, vol. 57, no. 9, pp. 1949-1957. DOI: 10.1109/TIM.2008.917192.

Tsopa, A. I. et al. The research program of millimetric radio waves attenuation characteristics on perspective communication lines of Ukraine. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), 2016, pp. 638-642. DOI: 10.1109/TCSET.2016.7452138.




DOI: https://doi.org/10.32620/aktt.2022.2.09