Numerical study of mixing in gas mixture generating system

Віталій Євгенович Гайдачук, Ольга Володимирівна Шипуль, Сергій Олександрович Заклінський, Вадим Олегович Гарін, Олег Валерійович Трифонов, Сергій Ігорович Планковський

Abstract


The subject of research is a gas-dynamic process of mixture formation with a given component mass fraction during overflow through the mixer nozzles in the mixture generation system. The aim of the study is the scientific and experimental evaluation of the mixer technical solutions to ensure the accuracy and homogeneity of the gas mixture. The current work conducts numerical study on the flow of a gas flow through the mixer nozzles of the mixture generation system, ensuring its stoichiometric component composition and homogeneity. The problem is solved by developing adequate mathematical models of gas-dynamic flow and analyzing the results of numerical simulations. The following results were obtained. A mixer with the nozzles in the mixture generation system has been created and a technical solution for its design has been scientifically substantiated. The areas of flow sections of mixer nozzles are experimentally established. A mathematical model of generating a mixture with a given component mass fraction was developed and a series of numerical experiments was conducted to study its overflow through the mixer. A 3D simulation was conducted using ANSYS CFX software. The stationary formulation of the problem is applied. In the nozzles of closed overflow of the mixer, the heat exchange of the gas flow with the walls is taken into account by solving a separate problem and determining the corresponding heat transfer coefficients. At the inputs to the mixer, the ratio of the initial pressure of the components of the mixture is determined, which ensures its stoichiometric composition. The fields of the gas flow velocities, the mass flow rate of the components of the gas mixture through the mixer, and pressure and temperature fields are obtained. Based on the simulation results, it was found that the design of the developed mixer ensures the creation of a gas mixture with a homogeneity of at least 3%. With a constant pressure ratio of the mixture components to the mixer inlet, the gas mixturedosing accuracy can be achieved at least 1%.

Keywords


mathematical model of the gas-dynamic process; supercritical outflow; numerical modeling; homogeneity of the gas mixture; heat transfer coefficient

References


Schellekens, P., Rosielle, N., Vermeulen, H., Vermeulen, M., Wetzels, S., Pril, W. Design for precision: current status and trends. CIRP Annals, vol. 47, iss. 2, pp. 557–586. DOI: 10.1016/S0007-8506(07)63243-02.

Pavlenko, D., Dvirnyk, Y., Przysowa, R. Advanced materials and technologies for compressor blades of small turbofan engines. Aerospace, 2021, vol. 8, iss. 1, Article 1. DOI: 10.3390/aerospace8010001.

Petare, A. C., Jain, N. K. A critical review of past research and advances in abrasive flow finishing process. The International Journal of Advanced Manufacturing Technology, 2018, vol. 97, iss. 1-4, pp. 741–782. DOI: 10.1007/s00170-018-1928-7.

Fuchs, F. J. Ultrasonic cleaning and washing of surfaces. Power Ultrasonics: Applications of High-Intensity Ultrasound, Gallego-Juárez, J. A., Graff, K. F. (eds.), Cambridge, Woodhead Publishing, 2015, pp. 577–609. DOI: 10.1016/B978-1-78242-028-6.00019-3.

Zhong, Z.-W. Advanced polishing, grinding and finishing processes for various manufacturing applications: A review. Materials and Manufacturing Processes, 2020, vol. 35, iss. 12, pp. 1279–1303. DOI: 10.1080/10426914.2020.1772481.

Ruszaj, A., Gawlik, J., Skoczypiec, S. Electrochemical machining – special equipment and applications in aircraft industry. Management and Production Engineering Review, 2016, vol. 7, iss. 2, pp. 34–41. DOI: 10.1515/mper-2016-0015.

Khafizov, I. I., Nurullin, I. G. Improving the quality of surfaces of products obtained by electroerosion treatment. IOP Conference Series: Materials Science and Engineering, 2020, vol. 915, iss. 1, Article 012027. DOI: 10.1088/1757-899X/915/1/012027.

Cerwenka, G., Surrey, P., Möller, M., Conrad, C., Prakash, V., Heilemann, M., & Emmelmann, C. In-depth characterization of the scanner-based selective laser deburring process. Journal of Laser Applications, 2018, vol. 30, iss. 3, Article 032510. DOI: 10.2351/1.5040642.

Korohodskyi, V., Kryshtopa, S., Migal, V., Rogovyi, A., Polivyanchuk, A., Slyn’ko, G., Manoylo, V., Vasylenko, O, Osetrov, O. Determining the characteristics for the rational adjusting of an fuel-air mixture composition in a two-stroke engine with internal mixture formation. Eastern-European Journal of Enterprise Technologies, 2020, vol. 2, no. 5-104, pp. 39–52. DOI: 10.15587/1729-4061.2020.200766.

Plankovskyy, S., Shypul, O., Tsegelnyk, Y., Tryfonov, O., Golovin, I. Simulation of surface heating for arbitrary shape’s moving bodies/sources by using R-functions. Acta Polytechnica, 2016, vol. 56, no. 6, pp. 472–477. DOI: 10.14311/AP.2016.56.0472.

Gillespie, L. K. Deburring and edge finishing handbook. Dearborn, Society of Manufacturing Engineers Publ., 1999. 404 p.

Struckmann, J., Kieser, A. Thermal Deburring. Luhden, ATL Anlagentechnik Luhden GmbH Publ., 2020. 94 p.

Fritz, A., Sekol, L., Koroskenyi, J., Walch, B., Minear, J., Fernandez, V., Liu, L. Experimental Analysis of Thermal Energy Deburring Process by Design of Experiment. ASME 2012 International Mechanical Engineering Congress and Exposition. ASME, 2012, vol. 3, pp. 2035–2041. DOI: 10.1115/IMECE2012-88411.

Jin, S. Y., Pramanik, A., Basak, A. K., Prakash, C., Shankar, S., Debnath, S. Burr formation and its treatments – a review. The International Journal of Advanced Manufacturing Technology, 2020, vol. 107, iss. 5-6, pp. 2189–2210. DOI: 10.1007/s00170-020-05203-2.

Plankovskyy, S. I., Shypul, O. V., Tsegelnyk, Ye. V., Tryfonov, O. V., Korytchenko, K. V., Baranov, O. O., Sysoyev, Yu. O., Garyn, V. O., Aks`onov, Ye. O., Kombarov, V. V., Zaklinskyy, S. O. Rozroblennya avtomatizovanogo kompleksu dlya precizіjnogo termoіmpul'snogo obroblennya detonuval'nimi gazovimi sumіshami: naukovі materіali : monografіya [Development of an automated complex for precision thermopulse treatment with detonating gas mixtures: scientific materials: monograph]. Kharkiv, Nac. aerokosm. un-t іm. M. Ye. Zhukovs'kogo «Harkіv. avіac. іn-t» Publ., 2020. 318 p.

Rozrobka tekhnolohiy ta tekhnichnykh rishen' dlya avtomatyzovanykh promyslovykh ustanovok pretsyziynoyi obrobky detaley ahrehativ HTD detonuyuchymy hazovymy sumishamy : zvit pro NDR (zaklyuchn.) [Development of technologies and technical solutions for automated industrial installations for precision machining of parts of gas turbine units with detonating gas mixtures], ker.: O. Shypul' ; vykon. : S. Plankovs'kyy et al., Reg.No. 0119U100943, Kharkiv, Nats. aerokosm. un-t im. M. Ye. Zhukovs'koho «Kharkiv. aviats. in-t», 2020. 170 p.

Du, A., Zhu, Z., Chu, C., Li, M. Effects of injector spray layout and injection strategy on gas mixture quality of gasoline direct injection engine. SAE Technical Paper, 2015, Paper 2015-01-0747. 10 p. DOI: 10.4271/2015-01-0747.

Song, E., Liu, Z., Yang, L., Yao, C., Sun, J., Dong, Q. Effects of nozzle structure on the gas mixture uniformity of marine gas engine. Ocean Engineering, 2017, vol. 142, pp. 507-520. DOI: 10.1016/j.oceaneng.2017.07.011.

Dost, T., Getzlaff, J. Design and simulation of a multi fuel gas mixture System of a wankel rotary engine. SAE Technical Paper, 2020, Paper 2020-01-0548. 16 p. DOI: 10.4271/2020-01-0548.

Sysoyev, Y. O. Tekhnolohiya mashynobuduvannya. Zabezpechennya efektyvnosti protsesiv otrymannya vakuumno-duhovykh pokryttiv : monohrafiya [Mechanical engineering technology. Ensuring the effectiveness of the processes of obtaining vacuum-arc coatings : monograph]. Kharkiv, Nats. aerokosm. un-t im. M. Ye. Zhukovs'koho «Kharkiv. aviats. in-t», 2021. 320 p.

Sysoiev, Y. O. The creation of multicomponent gas mixtures for ion-plasma technologies. Problems of Atomic Science and Technology, 2014, no. 2, pp. 137–142.

Lozin, A. V., Kovtun, Y. V., Moiseenko, V. E., Maznichenko, S. M., Baron, D. I., Kozulya, M. M., Krasyuk, A. Y., Listopad, V. M., Gribanov, V. Y., Martseniuk, Y. P. Uragan-2m gas mixing system. Problems of Atomic Science and Technology, 2021, no. 4, pp. 195-199. DOI: 10.46813/2021-134-195.

Plankovskyy, S. I., Shypul, O. V., Zaklinskyy, S. A., Tryfonov O. V. Dynamic method of gas mixtures creation for plasma technologies. Problems of Atomic Science and Technology, 2018, no. 6, pp. 189-193.

Plankovskyy, S., Shypul, O. Zaklinskyy, S., Tsegelnyk, Y., Bezkorovaina. O. Numerical simulations of mixture formation to ensuring the quality of thermal deburring. International Conference on Advanced Mechanical and Power Engineering (CAMPE 2021), Kharkiv, Ukraine. October 29-30, 2021. Lecture Notes in Mechanical Engineering, Cham, Springer, 2022.

Rozrobka tekhnolohiy ta tekhnichnykh rishen' dlya avtomatyzovanykh promyslovykh ustanovok pretsyziynoyi obrobky detaley ahrehativ HTD detonuyuchymy hazovymy sumishamy : zvit pro NDR (promizhn.) [Development of technologies and technical solutions for automated industrial installations for precision machining of parts of gas turbine units with detonating gas mixtures], ker.: S. Plankovs'kyy ; vykon.: O. Shypul' et al., Reg.No. 0119U100943, Kharkiv, Nats. aerokosm. un-t im. M. Ye. Zhukovs'koho «Kharkiv. aviats. in-t», 2019. 101 p.

ANSYS CFX Reference Guide. Available at: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/prod_page.html?pn=CFX&pid=CFX〈=en. (accessed 12.10.2021).

Menter, F. R. Two-equаtion eddy-viscosity turbulence models for engineering аpplicаtions. АIАА-Journаl, 1994, vol. 32, no. 8, pp. 269–289. DOI: 10.2514/3.12149.

Arias-Zugasti, M., Garcia-Ybarra, P. L., Castillo, J. L. Efficient calculation of multicomponent diffusion fluxes based on kinetic theory. Combustion and Flame, 2016, vol. 163, pp. 540–556. DOI: 10.1016/j.combustflame.2015.10.033

Menter, F. R., Kuntz, M., Bender. R. А scаle-аdаptive simulаtion model for turbulent flow predictions. АIАА, 2003, Pаper 2003-0767. 40 p. DOI: 10.2514/6.2003-767.




DOI: https://doi.org/10.32620/aktt.2021.6.05