Structure of the flow in the inter-tube channel of the nozzle apparatus with a rotary diaphragm

Александр Григорьевич Жирков, Александр Павлович Усатый, Елена Петровна Авдеева, Юрий Иванович Торба

Abstract


In the process of developing a numerical study method of a flat flow around a snap line with a rotary diaphragm, calculations were made at various degrees of opening the rotary diaphragm δ and pressure drops on the grille. As a result of calculations, for small degrees, the opening of the rotary diaphragm, complex patterns of the flow were obtained, in the inter-tube channel of the nozzle apparatus. The article presents some results of a numerical study of the supersonic flow in the channel of the nozzle apparatus with the degree of opening the rotary diaphragm δ = (0.15 ÷ 0.3). Modeling and calculating the flow of the working fluid is made using the Fluent software package. The construction of the calculated areas bounded by one inter-tube channel, for varying degrees of opening the diaphragm of the nozzle apparatus. Grids are built for calculated areas. Calculations were carried out for δ = (0.15 ÷ 0.3) and with different degrees of pressure drop on the grille. As a result of the calculations performed, the flow patterns in the inter-tube canal were obtained and behind it, and the distribution of the coefficients of the kinetic energy loss on the lattice front at various degrees of the discovery of the diaphragm at the inlet in the nozzle apparatus. According to the results of the work carried out, the following conclusions can be drawn: the structure of the stream in the inter-tube channel, the nozzle apparatus at small detection of the discovery, is divided into two parts: a supersonic core of the spawth of the blade and a dialing, the vortex zone at the back of the blade; The supersonic thread kernel at certain values of the relative pressure drop on the lattice (or the air flow values through the grid) is separated by shock fronts into several areas; The coefficients of energy loss, for small degrees of discovery, decrease with a decrease in the relative pressure drops (with an increase in the rate of expiration of the flow from the nozzle lattice); The greatest contribution to the magnitude of the loss of kinetic energy is introduced by a vortex zone in the inter-tube channel, and not wave phenomena in the core of the flow; Optimization of the flow part of the nozzle apparatus must be carried out in order to reduce areas with vortex flow. The results obtained in this work will be used to develop a methodology for a numerical study of the spatial flow around the nozzle lattices with rotary diaphragms.

Keywords


rotary diaphragm; numerical study; energy loss coefficients; heat turbines; turbulence models

References


Kondrat'ev, A. A., Rassohin, V. A., Olejnikov, S. Ju., Kondrat'ev, E. A., Osipov, A. V. Razvitie parovyh turbin na sverhkriticheskie i supersverhkriticheskie parametry gaza [Development of steam turbines for supercritical and super-critical gas-rame meters]. Vestnik Brjanskogo gosudarstvennogo tehnicheskogo universiteta [Herald of the Bryansk State Extension University], 2017, no. 1 (54), рр. 72-82. DOI: 10.12737/24894.

Usatyj, A. P., Fam, T. A. Sozdanie inzhenernoj metodiki ocenki jeffektivnosti soplovyh reshetok s povorotnymi diafragmami. [Creating an engineering methodology for assessing the effectiveness of nozzle lattices with rotary diaphragms]. Vestnik Nacional'nogo tehnichnogo universiteta «HPI» [Bulletin of the National Technical University "KPI"], Kharkov, 2018, no. 12, pp. 21-27.

Gurylev, V. G., Trifonov, A. K. Perehod sverhzvukovogo techenija v dozvukovoe v trube s rasshirjajushhimsja nachal'nym uchastkom [Transition of supersonic flow in a dialing in a pipe with an expanding initial area]. Uchenye zapiski CAGI [Scientific Notes TsAGI], 1980, vol. XI, no. 4, рp. 80-89.

Penzin, V. I. Tormozhenie sverhzvukovogo potoka v kanalah [Braking of supersonic current in the channels]. Moscow, Centr. ajerogidrodinamich. in-t Publ., 2012. 158 p.

Gus'kov, O. V., Kopchenov, V. I., Lipatov, I. I., Ostras', V. N., Staruhin, V. P. Processy tormozhenija sverhzvukovyh techenij v kanalah [Processes of braking over-sound flows in channels], Moscow, Fizmatlit Publ., 2008. 164 p.

Voroneckij, A. V., Suchkov, S. A., Filimonov, L. A. Osobennosti techenija sverhzvukovyh potokov v uzkih cilindricheskih kanalah [Features of the flow of supersonic streams in narrow cylindrical channels]. Inzhenernyj zhurnal: nauka i innovacii [Engineering journal: Science and innovation], 2013, no. 4. Available at: http://engjournal.ru/catalog/machin/rocket/695.html. (аccessed 05.04.2021).

Benenson, E. I. Teplofikacionnye parovye turbiny [Heat steam turbines]. Moscow, Jenergoatom-izdat Publ., 1986. 270 p.

Slabchenko, O. N., Kirsanov, D. V. Rezul'taty rascheta techenija v kanalah regulirujushhej povorotnoj diafragmy teplofikacionnoj turbiny [Results of calculating the flow in the channels of the regulating rotary diaphragm of the heat turbine]. Vestnik Nac. tehn. un-ta "HPI" : sb. nauch. tr. Temat. vyp. : Jenergeticheskie i teplotehnicheskie processy i oborudovanie [Bulletin of Nats. tehn Un-ta "KPI": Sat Scientific Tr. Temop. Vol.: Energy and heat engineering processes and equipment], Kharkov, NTU "HPI", 2008, no. 6, pp. 73-75.

Dejch, M. E., Filipov, G. A, Lazarev, L. Ja. Atlas profelej reshetok osevyh turbin [Atlas of chairs of lattices of axial turbines], Moscow, Mashinostroenie Publ., 1965. 96 p.

Ershov, S. V. Jakovlev, V. A. Vlijanie setochnogo razreshenija na rezul'taty rascheta trehmernyh techenij v protochnyh chastjah turbomashin pri ispol'zovanii RANS modelej [The effect of grid permission on the results of the calculation of three-dimensional currents in the pro-accurate parts of the turbomachine when using RANS models]. Probl. mashinostroenija [Probl. Mechanical engineering], 2015, vol. 18, no. 4/1, pp. 18-24.

Glushko, G. S. Ivanov, I. Je., Krjukov, I. A. Modelirovanie turbulentnosti v sverhzvukovyh strujnyh techenijah [Physico-chemical kinetics in gas dynamics]. Fiziko-himicheskaja kinetika v gazovoj dinamike [Physico-chemical kinetics in gas dynamics], 2010, no. 9, Available at: http://chemphys.edu.ru/issues/2010-9/articles/142/ (аccessed 05.04.2021).

Menter, F. R. Zonal two equation k-ω turbulence models for aerodynamic flows. AIAA, 1993, no. 93-2906, pp. 1-21.

Kurant, R., Fridrihs, K. Sverhzvukovoe techenie i udarnye volny [Supersonic flow and shock waves] Moskow, Izdatel'stvo inostrannoj literatury Pub., 1950. 427 p.

Nosatov, V. V., Semenjov, P. A. Raschetnojeksperimental'noe issledovanie sverhzvukovogo turbulentnogo otryvnogo techenija i lokal'noj teplootdachi v ploskom kanale s vnezapnym rasshireniem [Calculator-experimental study of supersonic turbulent breakdown and local heat transfer in a flat channel with a sudden expansion]. Vestnik MGTU im. N.Je. Baumana Serija "Estestvennye nauki" [Bulletin MGTU them. AD Bauman series "Natural Sciences"], 2014, no. 1, pp. 66-77.




DOI: https://doi.org/10.32620/aktt.2021.4sup2.05