Methods of clustering parameters in the creation of neural network multi-mode dynamic models of aircraft engines
Abstract
Keywords
Full Text:
PDFReferences
Hastie, T., Tibshirani, R., Friedman, J., Franklin, J. The elements of statistical learning: data mining, inference and prediction, The Mathematical Intelligencer, 2005, vol. 27, no. 2, pp. 83-85.
Bishop, C. M. Pattern Recognition and Ma-chine Learning. Springer Publ., 2006. 734 p.
Bengio, Y. Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural Networks, 1994, vol. 5, no. 2, pp. 157-166.
Sutton, R. S., Barto, A. G. Reinforcement Learning: an Introduction. MIT press Publ., 2018. 552 p.
Barlow, H. B. Unsupervised learning, Neural Computation, 1989, Vol. 1, no. 3, pp. 295-311.
McLachlan, G. J., Basford K. E. Mixture Models: Inference and Applications to Clustering. Journal of the Royal Statistical Society. Series C (Applied Statistics), M. Dekker New York, 1989, vol. 38, iss. 2, pp. 384-385. DOI: 10.2307/2348072.
Dahlin, J., Wills, A., Ninness, B. Sparse Bayesian ARX models with flexible noise distributions. IFAC-Papers On Line, 2018, vol. 51, no. 15, pp. 25-30.
Carvalho, C. M., Polson, N. G., Scott, J. G. The horseshoe estimator for sparse signals. Biometrika, 2010, vol. 97, no. 2, pp. 465-480.
Megiddo, N., Supowit, K. J. On the complexity of some common geometric location problems. SIAM Journal on Computing, 1984, vol. 13, no. 1, pp. 182-196.
Shindler, M., Wong, A., Meyerson, A. W. Fast and accurate k-means for large datasets. Advances in Neural Information Processing Systems, 2011, pp. 2375-2383.
Dempster, A. P., Laird, N. M., Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 1977, vol. 39, no. 1, pp. 1-22.
Frey, B. J., Dueck D. Clustering by passing messages between data points. Science, 2007, vol. 315, no. 5814. pp. 972-976.
Ester, M. A, Kriegel, H.-P., Sander. J., Xu, X. Density-based algorithm for dis-covering clusters in large spatial databases with nois. KDD, 1996, vol. 96, pp. 226-231.
Attias, H. Inferring parameters and structure of latent variable models by variational Bayes. Proceedings of the 15th conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc. 1999, pp. 21-30.
Pfitzner, D., Leibbrandt, R., Powers, D. Characterization and evaluation of similarity measures for pairs of clusterings. Knowledge and Information Systems, 2009, vol. 19, no. 3, pp. 361.
Hubert, L., Arabie, P. Comparing partitions. Journal of Classification, 1985, vol. 2, no. 1, pp. 193-218.
Strehl, A., Ghosh, J. Cluster ensembles – a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 2002, vol. 3, pp. 583-617.
Fowlkes, E. B., Mallows, C. L. A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 1983, vol. 78, no. 383, pp. 553-569.
Tamargazin, A. A., Pryimak, L. B. Neural net-work interpolation parameters of a multi-mode dynamic model of the aircraft engine. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2020, no. 7 (167), pp. 98-104. DOI: 10.32620/aktt.2020.7.14
DOI: https://doi.org/10.32620/aktt.2021.4sup2.09